首页> 外文期刊>Computational Imaging, IEEE Transactions on >A Model-Based Iterative Reconstruction Approach to Tunable Diode Laser Absorption Tomography
【24h】

A Model-Based Iterative Reconstruction Approach to Tunable Diode Laser Absorption Tomography

机译:可调二极管激光吸收层析成像的基于模型的迭代重建方法

获取原文
获取原文并翻译 | 示例

摘要

Tunable diode laser absorption tomography (TDLAT) has emerged as a popular nonintrusive technique for simultaneous sensing of gas concentration and temperature. However, TDLAT imaging of concentration and temperature is an ill-posed, nonlinear inverse problem. Major challenges of TDLAT imaging include a highly nonlinear forward model, few projection measurements, and limited training data. We propose a novel model-based iterative reconstruction (MBIR) framework for TDLAT imaging. To do this, we formulate a nonlinear forward model for TDLAT that incorporates the physics of light absorbance through gaseous media, and we couple it with a non-Gaussian prior model based on a Gaussian mixture distribution that can be trained using a sparse training set. We show that the resulting MAP estimation problem can be solved using majorization minimization together with a novel multigrid optimization algorithm that solves the resulting optimization problem using an orthogonal basis set. Reconstructions using simulated TDLAT datasets show that our TDLAT-MBIR method can reduce reconstruction error while also resulting in a very computationally efficient algorithm.
机译:可调二极管激光吸收层析成像(TDLAT)已经成为一种流行的非侵入性技术,用于同时检测气体浓度和温度。但是,浓度和温度的TDLAT成像是一个不适定的非线性逆问题。 TDLAT成像的主要挑战包括高度非线性的正向模型,很少的投影测量和有限的训练数据。我们提出了一种新颖的基于模型的TDLAT成像的迭代重建(MBIR)框架。为此,我们为TDLAT制定了非线性前向模型,该模型结合了通过气态介质吸收光的物理原理,并将其与基于高斯混合分布的非高斯先验模型耦合,该模型可以使用稀疏训练集进行训练。我们表明,可以使用主化极小化以及新颖的多重网格优化算法(使用正交基集解决最终优化问题)来解决最终的MAP估计问题。使用模拟的TDLAT数据集进行的重建表明,我们的TDLAT-MBIR方法可以减少重建错误,同时还可以产生一种计算效率很高的算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号