首页> 外文期刊>Computational Imaging, IEEE Transactions on >Robust Spectral Unmixing of Sparse Multispectral Lidar Waveforms Using Gamma Markov Random Fields
【24h】

Robust Spectral Unmixing of Sparse Multispectral Lidar Waveforms Using Gamma Markov Random Fields

机译:使用伽马可夫随机场的稀疏多光谱激光雷达波形的鲁棒光谱解混

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a new Bayesian spectral unmixing algorithm to analyze remote scenes sensed via sparse multispectral Lidar measurements. To a first approximation, in the presence of a target, each Lidar waveform consists of a main peak, whose position depends on the target distance and whose amplitude depends on the wavelength of the laser source considered (i.e., on the target reflectivity). Besides, these temporal responses are usually assumed to be corrupted by Poisson noise in the low photon count regime. When considering multiple wavelengths, it becomes possible to use spectral information in order to identify and quantify the main materials in the scene, in addition to estimation of the Lidar-based range profiles. Due to its anomaly detection capability, the proposed hierarchical Bayesian model, coupled with an efficient Markov chain Monte Carlo algorithm, allows robust estimation of depth images together with abundance and outlier maps associated with the observed three-dimensional scene. The proposed methodology is illustrated via experiments conducted with real multispectral Lidar data acquired in a controlled environment. The results demonstrate the possibility to unmix spectral responses constructed from extremely sparse photon counts (less than 10 photons per pixel and band).
机译:本文提出了一种新的贝叶斯光谱分解算法,用于分析通过稀疏多光谱激光雷达测量而感测到的远程场景。对于第一近似,在存在目标的情况下,每个激光雷达波形由一个主峰组成,其位置取决于目标距离,并且其振幅取决于所考虑的激光源的波长(即目标反射率)。此外,在低光子计数状态下,通常认为这些时间响应会被泊松噪声破坏。当考虑多个波长时,除了估计基于激光雷达的距离剖面外,还可以使用光谱信息来识别和量化场景中的主要材料。由于其异常检测能力,所提出的分层贝叶斯模型与有效的马尔可夫链蒙特卡洛算法相结合,可以对深度图像以及与观察到的三维场景相关联的大量和离群图进行鲁棒的估计。通过使用在受控环境中获取的真实多光谱激光雷达数据进行的实验对所提出的方法进行了说明。结果表明,可以解开由极稀疏的光子计数(每个像素和每个带少于10个光子)构成的光谱响应的可能性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号