首页> 外文期刊>Computational Imaging, IEEE Transactions on >Two-Dimensional Non-Line-of-Sight Scene Estimation From a Single Edge Occluder
【24h】

Two-Dimensional Non-Line-of-Sight Scene Estimation From a Single Edge Occluder

机译:单个边缘封堵器的二维非视线场景估计

获取原文
获取原文并翻译 | 示例

摘要

Passive non-line-of-sight imaging methods are often faster and stealthier than their active counterparts, requiring less complex and costly equipment. However, many of these methods exploit motion of an occluder or the hidden scene, or require knowledge or calibration of complicated occluders. The edge of a wall is a known and ubiquitous occluding structure that may be used as an aperture to image the region hidden behind it. Light from around the corner is cast onto the floor forming a fan-like penumbra rather than a sharp shadow. Subtle variations in the penumbra contain a remarkable amount of information about the hidden scene. Previous work has leveraged the vertical nature of the edge to demonstrate 1D (in angle measured around the corner) reconstructions of moving and stationary hidden scenery from as little as a single photograph of the penumbra. In this work, we introduce a second reconstruction dimension: range measured from the edge. We derive a new forward model, accounting for radial falloff, and propose two inversion algorithms to form 2D reconstructions from a single photograph of the penumbra. Performances of both algorithms are demonstrated on experimental data corresponding to several different hidden scene configurations. A Cramer-Rao bound analysis further demonstrates the feasibility (and utility) of the 2D corner camera.
机译:被动非瞄准成像方法通常比活跃的对应物更快,悄悄地悄悄,需要更少的复杂和昂贵的设备。然而,许多这些方法利用了封堵器或隐藏场景的运动,或者需要对复杂的封闭者的知识或校准。墙壁的边缘是一种已知的和普遍的封闭结构,其可以用作图像隐藏在其后的区域。来自拐角处的光线被铸造到地板上,形成一个风扇样的半影而不是锋利的阴影。 Penumbra的微妙变化包含有关隐藏场景的显着信息。以前的工作已经利用了边缘的垂直性,以演示1D(直角测量的角度)移动和静止隐藏的风景的重建从一张单人的照片。在这项工作中,我们引入了第二个重建尺寸:从边缘测量的范围。我们推出了一个新的前向模型,占径向衰减,并提出了两个反转算法,以从Penumbra的单个照片形成2D重建。对应于几种不同的隐藏场景配置的实验数据,对两种算法的性能进行说明。 Cramer-Rao绑定分析进一步展示了2D角相机的可行性(和效用)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号