首页> 外文期刊>Computational Imaging, IEEE Transactions on >CNF+CT: Context Network Fusion of Cascade-Trained Convolutional Neural Networks for Image Super-Resolution
【24h】

CNF+CT: Context Network Fusion of Cascade-Trained Convolutional Neural Networks for Image Super-Resolution

机译:CNF + CT:图像超分辨率级联卷积神经网络的上下文网络融合

获取原文
获取原文并翻译 | 示例

摘要

A novel cascade learning framework to incrementally train deeper and more accurate convolutional neural networks is introduced. The proposed cascade learning facilitates the training of deep efficient networks with plain convolutional neural network (CNN) architectures, as well as with residual network (ResNet) architectures. This is demonstrated on the problem of image super-resolution (SR). We show that cascade-trained (CT) SR CNNs and CT-ResNets can achieve state-of-the-art results with a smaller number of network parameters. To further improve the network's efficiency, we propose a cascade trimming strategy that progressively reduces the network size, proceeding by trimming a group of layers at a time, while preserving the network's discriminative ability. We propose context network fusion (CNF) as a method to combine features from an ensemble of networks through context fusion layers. We show that CNF of an ensemble of CT SR networks can result in a network with better efficiency and accuracy than that of other fusion methods. CNF can also be trained by the proposed edge-aware loss function to obtain sharper edges and improve the perceptual image quality. Experiments on benchmark datasets show that our proposed deep convolutional networks achieve state-of-the-art accuracy and are much faster than existing deep super-resolution networks.
机译:介绍了一种新的级联学习框架,用于逐步训练更深层次,更准确的卷积神经网络。拟议的级联学习有助于利用普通卷积神经网络(CNN)架构以及剩余网络(Resnet)架构的培训。这是关于图像超分辨率(SR)的问题。我们表明级联训练(CT)SR CNN和CT-RESEN可以通过较少数量的网络参数实现最先进的结果。为了进一步提高网络的效率,我们提出了一种级联修剪策略,逐步减少网络尺寸,一次通过修剪一组层,同时保留网络的鉴别能力。我们将上下文网络融合(CNF)作为一种通过上下文融合层组合来自网络集合的功能的方法。我们表明CT SR网络的集合的CNF可能导致网络具有比其他融合方法更好的效率和准确性。 CNF也可以通过所提出的边缘感知损耗函数训练,以获得更清晰的边缘并提高感知图像质量。基准数据集的实验表明,我们提出的深度卷积网络实现最先进的准确性,并且比现有的深层超分辨率网络更快。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号