首页> 外文期刊>Computational Imaging, IEEE Transactions on >Gradient-Based Source Mask Optimization for Extreme Ultraviolet Lithography
【24h】

Gradient-Based Source Mask Optimization for Extreme Ultraviolet Lithography

机译:基于梯度的极紫外光刻光刻源掩模优化

获取原文
获取原文并翻译 | 示例

摘要

Extreme ultraviolet (EUV) lithography is the most promising technology for the next generation very-large scale integrated circuit fabrication. EUV lithography invariably introduces distortions in the projected lithographic mask patterns and thus inverse lithography tools are needed to compensate for these. This paper develops two kinds of model-based source and mask optimization (SMO) frameworks, referred to as the parametric SMO and the pixelated SMO, both to provide primary strategies for improving the image fidelity of EUV lithography. In the parametric SMO, the source pattern is defined by a few geometrical parameters. Meanwhile, in the pixelated SMO, the light source is represented by a grid pattern. These two SMO frameworks are established using a nonlinear imaging model that coarsely approximates the optical proximity effect, flare and photoresist effects in an analytic closed-form. In addition, a retargeting method is used to approximately compensate for the mask shadowing effects based on a calibrated shadowing model. Another contribution of this paper is to develop a hybrid cooperative optimization algorithm based on conjugate gradient and compare it to the simultaneous SMO algorithm. It is shown that the hybrid SMO algorithm can achieve superior convergence characteristics and computational efficiency over the simultaneous SMO algorithm.
机译:极紫外(EUV)光刻技术是下一代超大规模集成电路制造的最有前途的技术。 EUV光刻始终会在投影的光刻掩模图案中引入畸变,因此需要使用反向光刻工具来补偿这些畸变。本文开发了两种基于模型的源和掩模优化(SMO)框架,分别称为参数SMO和像素化SMO,两者均为提高EUV光刻的图像保真度提供了主要策略。在参数SMO中,源图案由一些几何参数定义。同时,在像素化的SMO中,光源由网格图案表示。这两个SMO框架是使用非线性成像模型建立的,该模型以解析的闭合形式粗略地近似了光学邻近效应,耀斑和光致抗蚀剂效应。另外,基于校准的阴影模型,重定位方法用于近似补偿掩模的阴影效果。本文的另一个贡献是开发一种基于共轭梯度的混合协同优化算法,并将其与同步SMO算法进行比较。结果表明,混合SMO算法比同步SMO算法具有更好的收敛性和计算效率。

著录项

  • 来源
    《Computational Imaging, IEEE Transactions on》 |2019年第1期|120-135|共16页
  • 作者单位

    Beijing Inst Technol, Sch Opt & Photon, Minist Educ China, Key Lab Photoelect Imaging Technol & Syst, Beijing 100081, Peoples R China;

    Beijing Inst Technol, Sch Opt & Photon, Minist Educ China, Key Lab Photoelect Imaging Technol & Syst, Beijing 100081, Peoples R China;

    Beijing Inst Technol, Sch Opt & Photon, Minist Educ China, Key Lab Photoelect Imaging Technol & Syst, Beijing 100081, Peoples R China;

    Beijing Inst Technol, Sch Opt & Photon, Minist Educ China, Key Lab Photoelect Imaging Technol & Syst, Beijing 100081, Peoples R China;

    Univ Delaware, Dept Elect & Comp Engn, Newark, DE 19716 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Computational lithography; inverse problem; EUV lithography; source and mask optimization (SMO);

    机译:计算光刻;反问题;EUV光刻;源和掩模优化(SMO);

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号