首页> 外文期刊>Computational Imaging, IEEE Transactions on >Efficient Dynamic Parallel MRI Reconstruction for the Low-Rank Plus Sparse Model
【24h】

Efficient Dynamic Parallel MRI Reconstruction for the Low-Rank Plus Sparse Model

机译:低秩加稀疏模型的高效动态并行MRI重建

获取原文
获取原文并翻译 | 示例

摘要

The low-rank plus sparse (L+S) decomposition model enables the reconstruction of undersampled dynamic parallel magnetic resonance imaging data. Solving for the low rank and the sparse components involves nonsmooth composite convex optimization, and algorithms for this problem can he categorized into proximal gradient methods and variable splitting methods. This paper investigates new efficient algorithms for both schemes. While current proximal gradient techniques for the L+S model involve the classical iterative soft thresholding algorithm (ISTA), this paper considers two accelerated alternatives, one based on the fast iterative shrinkage-thresholding algorithm (FISTA) and the other with the recent proximal optimized gradient method (POGM). In the augmented Lagrangian (AL) framework, we propose an efficient variable splitting scheme based on the form of the data acquisition operator, leading to simpler computation than the conjugate gradient approach required by existing AL methods. Numerical results suggest faster convergence of the efficient implementations for both frameworks, with POGM providing the fastest convergence overall and the practical benefit of being free of algorithm tuning parameters.
机译:低秩加稀疏(L + S)分解模型能够重建欠采样的动态并行磁共振成像数据。解决低秩和稀疏分量涉及非光滑复合凸优化,针对此问题的算法可分为近端梯度法和变量分裂法。本文研究了两种方案的新有效算法。虽然当前L + S模型的近端梯度技术涉及经典的迭代软阈值算法(ISTA),但本文考虑了两种加速替代方案,一种基于快速迭代收缩阈值算法(FISTA),另一种采用最近的近端优化算法。梯度法(POGM)。在增强拉格朗日(AL)框架中,我们基于数据采集算子的形式提出了一种有效的变量拆分方案,与现有AL方法所需的共轭梯度方法相比,该方法可简化计算。数值结果表明,这两种框架的有效实现方式都可以更快收敛,而POGM可以提供最快的总体收敛速度,并且可以避免算法调整参数的实际好处。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号