首页> 外文期刊>Computational Geosciences >Bayesian analysis of the impact of rainfall data product on simulated slope failure for North Carolina locations
【24h】

Bayesian analysis of the impact of rainfall data product on simulated slope failure for North Carolina locations

机译:贝叶斯分析降雨数据乘积对北卡罗莱纳州模拟边坡破坏的影响

获取原文
获取原文并翻译 | 示例

摘要

In the past decades, many different approaches have been developed in the literature to quantify the load-carrying capacity and geotechnical stability (or the factor of safety, F-s) of variably saturated hillslopes. Much of this work has focused on a deterministic characterization of hillslope stability. Yet, simulated F-s values are subject to considerable uncertainty due to our inability to characterize accurately the soil mantle's properties (hydraulic, geotechnical, and geomorphologic) and spatiotemporal variability of the moisture content of the hillslope interior. This is particularly true at larger spatial scales. Thus, uncertainty-incorporating analyses of physically based models of rain-induced landslides are rare in the literature. Such landslide modeling is typically conducted at the hillslope scale using gauge-based rainfall forcing data with rather poor spatiotemporal coverage. For regional landslide modeling, the specific advantages and/or disadvantages of gauge-only, radar-merged and satellite-based rainfall products are not clearly established. Here, we compare and evaluate the performance of the Transient Rainfall Infiltration and Grid-based Regional Slope-stability analysis (TRIGRS) model for three different rainfall products using 112 observed landslides in the period between 2004 and 2011 from the North Carolina Geological Survey database. Our study includes the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis Version 7 (TMPA V7), the North American Land Data Assimilation System Phase 2 (NLDAS-2) analysis, and the reference truth Stage IV precipitation. TRIGRS model performance was rather inferior with the use of literature values of the geotechnical parameters and soil hydraulic properties from ROSETTA using soil textural and bulk density data from SSURGO (Soil Survey Geographic database). The performance of TRIGRS improved considerably after Bayesian estimation of the parameters with the DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm using Stage IV precipitation data. Hereto, we use a likelihood function that combines binary slope failure information from landslide event and null periods using multivariate frequency distribution-based metrics such as the false discovery and false omission rates. Our results demonstrate that the Stage IV-inferred TRIGRS parameter distributions generalize well to TMPA and NLDAS-2 precipitation data, particularly at sites with considerably larger TMPA and NLDAS-2 rainfall amounts during landslide events than null periods. TRIGRS model performance is then rather similar for all three rainfall products. At higher elevations, however, the TMPA and NLDAS-2 precipitation volumes are insufficient and their performance with the Stage IV-derived parameter distributions indicates their inability to accurately characterize hillslope stability.
机译:在过去的几十年中,文献中已经开发出许多不同的方法来量化饱和饱和山坡的承载能力和岩土工程稳定性(或安全系数F-s)。这项工作大部分集中在对斜坡稳定性的确定性表征上。然而,由于我们无法准确地描述土壤地幔的特性(液压,岩土和地貌)以及山坡内部水分的时空变化,模拟的F-s值存在很大的不确定性。在较大的空间尺度上尤其如此。因此,在文献中很少有基于降雨的滑坡基于物理模型的不确定性分析。这种滑坡建模通常是在山坡规模上使用时空覆盖率较差的基于量规的降雨强迫数据进行的。对于区域滑坡建模,仅采用轨距,雷达合并和基于卫星的降雨产品的具体优势和/或劣势尚未明确。在这里,我们使用北卡罗来纳州地质调查数据库中2004年至2011年之间的112个观测到的滑坡,对三种不同的降雨产品进行了瞬时降雨入渗和基于网格的区域边坡稳定性分析(TRIGRS)模型的比较和评估,并进行了评估。我们的研究包括热带降雨测量任务(TRMM)多卫星降水分析版本7(TMPA V7),北美土地数据同化系统第2阶段(NLDAS-2)分析以及参考真相第IV阶段降水。使用来自SSURGO(土壤调查地理数据库)的土壤质地和堆积密度数据,使用ROSETTA的岩土参数和土壤水力学特性的文献值时,TRIGRS模型的性能相当差。使用第四阶段降水数据的差分演化自适应大都会算法(DREAM)对参数进行贝叶斯估计后,TRIGRS的性能得到了显着改善。到目前为止,我们使用了似然函数,该函数使用基于多元频率分布的度量标准(例如错误发现和错误遗漏率)组合了来自滑坡事件和零周的二进制斜坡故障信息。我们的结果表明,第四阶段推断的TRIGRS参数分布很好地适用于TMPA和NLDAS-2降水数据,尤其是在滑坡事件中TMPA和NLDAS-2降雨量比零零星时期大得多的地点。然后,对于所有三种降雨产品,TRIGRS模型的性能都非常相似。然而,在更高的海拔高度,TMPA和NLDAS-2的降水量不足,并且它们在IV阶段得出的参数分布中的表现表明它们无法准确地描述山坡稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号