首页> 外文期刊>Computational Geosciences >Comparison of data-driven uncertainty quantification methods for a carbon dioxide storage benchmark scenario
【24h】

Comparison of data-driven uncertainty quantification methods for a carbon dioxide storage benchmark scenario

机译:二氧化碳存储基准情景中数据驱动的不确定性量化方法的比较

获取原文
获取原文并翻译 | 示例

摘要

A variety of methods is available to quantify uncertainties arising within the modeling of flow and transport in carbon dioxide storage, but there is a lack of thorough comparisons. Usually, raw data from such storage sites can hardly be described by theoretical statistical distributions since only very limited data is available. Hence, exact information on distribution shapes for all uncertain parameters is very rare in realistic applications. We discuss and compare four different methods tested for data-driven uncertainty quantification based on a benchmark scenario of carbon dioxide storage. In the benchmark, for which we provide data and code, carbon dioxide is injected into a saline aquifer modeled by the nonlinear capillarity-free fractional flow formulation for two incompressible fluid phases, namely carbon dioxide and brine. To cover different aspects of uncertainty quantification, we incorporate various sources of uncertainty such as uncertainty of boundary conditions, of parameters in constitutive relations, and of material properties. We consider recent versions of the following non-intrusive and intrusive uncertainty quantification methods: arbitrary polynomial chaos, spatially adaptive sparse grids, kernel-based greedy interpolation, and hybrid stochastic Galerkin. The performance of each approach is demonstrated assessing expectation value and standard deviation of the carbon dioxide saturation against a reference statistic based on Monte Carlo sampling. We compare the convergence of all methods reporting on accuracy with respect to the number of model runs and resolution. Finally, we offer suggestions about the methods' advantages and disadvantages that can guide the modeler for uncertainty quantification in carbon dioxide storage and beyond.
机译:有多种方法可用于量化在二氧化碳存储中的流量和传输模型中出现的不确定性,但缺乏彻底的比较。通常,由于只有非常有限的数据可用,因此很难通过理论统计分布来描述来自此类存储站点的原始数据。因此,在实际应用中,很少有关于所有不确定参数的分布形状的确切信息。我们讨论并比较了基于二氧化碳存储基准方案的数据驱动不确定性量化测试的四种不同方法。在我们提供数据和代码的基准测试中,将二氧化碳注入到咸水含水层中,该咸水含水层通过非线性的无毛细管分数流公式化针对两个不可压缩的流体相(即二氧化碳和盐水)进行建模。为了涵盖不确定性量化的不同方面,我们引入了各种不确定性来源,例如边界条件,本构关系中的参数以及材料属性的不确定性。我们考虑以下非侵入式和侵入式不确定性量化方法的最新版本:任意多项式混沌,空间自适应稀疏网格,基于内核的贪婪插值和混合随机Galerkin。演示了每种方法的性能,并根据基于蒙特卡洛抽样的参考统计数据评估了二氧化碳饱和度的期望值和标准偏差。我们比较了报告方法准确性和模型运行次数和分辨率的所有方法的收敛性。最后,我们提供了有关方法优缺点的建议,这些方法可以指导建模者进行二氧化碳存储及以后的不确定性量化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号