首页> 外文会议>AIAA spacecraft structures conference;AIAA SciTech forum >A Comparison of Uncertainty Quantification Methods on Benchmark Problems for for Space Deployable Structures
【24h】

A Comparison of Uncertainty Quantification Methods on Benchmark Problems for for Space Deployable Structures

机译:空间可展开结构基准问题的不确定性量化方法比较

获取原文

摘要

The efficacy of several uncertainty quantification methods are compared on two deploy-able structures benchmark problems. These benchmarks include typical pathologies found in large deployable structures, including contact with flexible components under low rate conditions and geometrically nonlinear displacements. The performance of the Sierra Solid Mechanics computational platform on these benchmarks was previously investigated. This paper continues this exploration by assessing competing methods for sensitivity analysis and uncertainty quantification on these benchmarks. A particular objective was to consider the mixture of both epistemic variabilities (such as machine tolerances or design uncertainties) and aleatory variabilities (such as calibrated material constants) using the DAKOTA uncertainty quantification platform. The results demonstrate that these benchmarks can exhibit very high off-nominal reaction forces due to the parameter variations. Moreover, it was found that the treatment of the epistemic variables as uniform random variables, as is typically done in Monte Carlo analysis, may lead to significantly different margin estimates than a hybrid epistemic-aleatory analysis.
机译:在两个可部署结构基准问题上比较了几种不确定性量化方法的功效。这些基准包括大型可部署结构中的典型病理,包括在低速率条件下与柔性组件接触以及几何非线性位移。之前已经研究了Sierra固体力学计算平台在这些基准上的性能。本文通过评估在这些基准上进行敏感性分析和不确定性定量分析的竞争方法,继续进行这一探索。一个特定的目标是使用DAKOTA不确定性量化平台来考虑认知变量(例如机器公差或设计不确定性)和偶然变量(例如校准的材料常数)的混合。结果表明,由于参数变化,这些基准可以表现出非常高的标称反作用力。此外,已发现将认知变量作为统一随机变量进行处理(如蒙特卡洛分析中通常进行的处理)可能会导致与混合认知认知分析相比产生明显不同的余量估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号