首页> 外文期刊>Computational Geosciences >Integration Of Local-global Upscaling And Grid Adaptivity For Simulation Of Subsurface Flow In Heterogeneous Formations
【24h】

Integration Of Local-global Upscaling And Grid Adaptivity For Simulation Of Subsurface Flow In Heterogeneous Formations

机译:局部-全局放大和网格自适应性的集成,用于模拟非均质地层中的地下流动

获取原文
获取原文并翻译 | 示例
           

摘要

We propose a methodology, called multilevel local-global (MLLG) upscaling, for generating accurate upscaled models of permeabilities or trans-missibilities for flow simulation on adapted grids in heterogeneous subsurface formations. The method generates an initial adapted grid based on the given fine-scale reservoir heterogeneity and potential flow paths. It then applies local-global (LG) upscaling for permeability or transmissibility [7], along with adaptiv-ity, in an iterative manner. In each iteration of MLLG, the grid can be adapted where needed to reduce flow solver and upscaling errors. The adaptivity is controlled with a flow-based indicator. The iterative process is continued until consistency between the global solve on the adapted grid and the local solves is obtained. While each application of LG upscaling is also an iterative process, this inner iteration generally takes only one or two iterations to converge. Furthermore, the number of outer iterations is bounded above, and hence, the computational costs of this approach are low. We design a new flow-based weighting of transmissibility values in LG upscaling that significantly improves the accuracy of LG and MLLG over traditional local transmissibility calculations. For highly heterogeneous (e.g., channelized) systems, the integration of grid adaptivity and LG upscaling is shown to consistently provide more accurate coarse-scale models for global flow, relative to reference fine-scale results, than do existing upscaling techniques applied to uniform grids of similar densities. Another attractive property of the integration of upscaling and adaptivity is that process dependency is strongly reduced, that is, the approach computes accurate global flow results also for flows driven by boundary conditions different from the generic boundary conditions used to compute the upscaled parameters. The method is demonstrated on Cartesian cell-based anisotropic refinement (CCAR) grids, but it can be applied to other adaptation strategies for structured grids and extended to unstructured grids.
机译:我们提出了一种方法,称为多级局部全局(MLLG)放大,用于生成渗透率或透射率的精确放大模型,用于非均质地下地层中适应网格上的流动模拟。该方法基于给定的精细储层非均质性和潜在的流动路径生成初始的自适应网格。然后,它以迭代方式对渗透性或可传输性[7]进行局部-全局(LG)放大,以及适应性。在MLLG的每次迭代中,都可以在需要的地方调整网格,以减少流量求解器和放大错误。适应性由基于流量的指示器控制。继续迭代过程,直到获得自适应网格上的全局求解与局部求解之间的一致性为止。虽然LG升频的每个应用也是一个迭代过程,但此内部迭代通常只需要进行一次或两次迭代即可收敛。此外,外部迭代的数量在上面是有界的,因此,该方法的计算成本较低。我们在LG升级中设计了一种新的基于流的可传输性值加权,与传统的本地可传输性计算相比,可显着提高LG和MLLG的准确性。对于高度异构(例如通道化)的系统,与参考精细尺度结果相比,网格适应性和LG升频的集成显示出始终如一地为全局流提供更准确的粗尺度模型,这与应用于统一网格的现有升尺度技术相比相似的密度。升级和适应性集成的另一个吸引人的特性是,极大地减少了过程依赖性,也就是说,该方法还可以为边界条件驱动的流计算精确的全局流结果,该边界条件不同于用于计算扩展参数的通用边界条件。该方法在基于笛卡尔单元的各向异性细化(CCAR)网格上得到了证明,但可以应用于结构化网格的其他适应策略,并扩展到非结构化网格。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号