首页> 外文期刊>Computational Geosciences >An integrative approach to robust design and probabilistic risk assessment for CO2 storage in geological formations
【24h】

An integrative approach to robust design and probabilistic risk assessment for CO2 storage in geological formations

机译:用于地质层中二氧化碳封存的鲁棒设计和概率风险评估的综合方法

获取原文
获取原文并翻译 | 示例

摘要

CO_2 storage in geological formations is currently being discussed intensively as a technology with a high potential for mitigating CO_2 emissions. However, any large-scale application requires a thorough analysis of the potential risks. Current numerical simulation models are too expensive for probabilistic risk analysis or stochastic approaches based on a brute-force approach of repeated simulation. Even single deterministic simulations may require parallel high-performance computing. The multiphase flow processes involved are too non-linear for quasi-linear error propagation and other simplified stochastic tools. As an alternative approach, we propose a massive stochastic model reduction based on the probabilistic collocation method. The model response is projected onto a higher-order orthogonal basis of polynomials to approximate dependence on uncertain parameters (porosity, permeability, etc.) and design parameters (injection rate, depth, etc.). This allows for a non-linear propagation of model uncertainty affecting the predicted risk, ensures fast computation, and provides a powerful tool for combining design variables and uncertain variables into one approach based on an integrative response surface. Thus, the design task of finding optimal injection regimes explicitly includes uncertainty, which leads to robust designs with a minimum failure probability. We validate our proposed stochastic approach by Monte Carlo simulation using a common 3D benchmark problem (Class et al., Comput Geosci 13:451-167, 2009). A reasonable compromise between computational efforts and precision was reached already with second-order polynomials. In our case study, the proposed approach yields a significant computational speed-up by a factor of 100 compared with the Monte Carlo evaluation. We demonstrate that, due to the non-linearity of the flow and transport processes during CO2 injection, including uncertainty in the analysis leads to a systematic and significant shift of the predicted leakage rates toward higher values compared with deterministic simulations, affecting both risk estimates and the design of injection scenarios.
机译:目前,作为一种具有减轻CO_2排放潜力的技术,正在深入讨论将CO_2储存在地质构造中的问题。但是,任何大规模应用都需要对潜在风险进行彻底分析。对于基于重复模拟的蛮力方法的概率风险分析或随机方法,当前的数值模拟模型过于昂贵。即使是单个确定性仿真,也可能需要并行的高性能计算。对于准线性误差传播和其他简化的随机工具而言,涉及的多相流过程太非线性了。作为一种替代方法,我们提出了一种基于概率搭配方法的大规模随机模型约简。将模型响应投影到多项式的高阶正交基础上,以近似依赖于不确定参数(孔隙度,渗透率等)和设计参数(注入速率,深度等)。这允许影响预测风险的模型不确定性的非线性传播,确保快速计算,并提供了一个强大的工具,可以将设计变量和不确定性变量组合为一个基于综合响应面的方法。因此,寻找最佳喷射方式的设计任务明确包括不确定性,这导致具有最小故障概率的稳健设计。我们使用常见的3D基准问题通过蒙特卡洛模拟验证了我们提出的随机方法(Class等,Comput Geosci 13:451-167,2009)。使用二阶多项式已经在计算工作量和精度之间达成了合理的折衷。在我们的案例研究中,与蒙特卡洛评估相比,该方法可将计算速度显着提高100倍。我们证明,由于二氧化碳注入过程中流量和运输过程的非线性,分析中的不确定性导致与确定性模拟相比,预测的泄漏率朝着更高的值进行系统且显着的偏移,从而影响风险估计和注入方案的设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号