首页> 外文期刊>Computational Geosciences >History matching of statistically anisotropic fields using the Karhunen-Loeve expansion-based global parameterization technique
【24h】

History matching of statistically anisotropic fields using the Karhunen-Loeve expansion-based global parameterization technique

机译:使用基于Karhunen-Loeve展开的全局参数化技术对统计各向异性场进行历史匹配

获取原文
获取原文并翻译 | 示例

摘要

Traditional ensemble-based history matching method, such as the ensemble Kalman filter and iterative ensemble filters, usually update reservoir parameter fields using numerical grid-based parameterization. Although a parameter constraint term in the objective function for deriving these methods exists, it is difficult to preserve the geological continuity of the parameter field in the updating process of these methods; this is especially the case in the estimation of statistically anisotropic fields (such as a statistically anisotropic Gaussian field and fades field with elongated facies) with uncertainties about the anisotropy direction. In this work, we propose a Karhunen-Loeve expansion-based global parameterization technique that is combined with the ensemble-based history matching method for inverse modeling of statistically anisotropic fields. By using the Karhunen-Loeve expansion, a Gaussian random field can be parameterized by a group of independent Gaussian random variables. For a facies field, we combine the Karhunen-Loeve expansion and the level set technique to perform the parameterization; that is, for each facies, we use a Gaussian random field and a level set algorithm to parameterize it, and the Gaussian random field is further parameterized by the Karhunen-Loeve expansion. We treat the independent Gaussian random variables in the Karhunen-Loeve expansion as the model parameters. When the anisotropy direction of the statistically anisotropic field is uncertain, we also treat it as a model parameter for updating. After model parameterization, we use the ensemble randomized maximum likelihood filter to perform history matching. Because of the nature of the Karhunen-Loeve expansion, the geostatistical characteristics of the parameter field can be preserved in the updating process. Synthetic cases are set up to test the performance of the proposed method. Numerical results show that the proposed method is suitable for estimating statistically anisotropic fields.
机译:传统的基于集合的历史匹配方法,例如集合卡尔曼滤波器和迭代集合滤波器,通常使用基于数值网格的参数化来更新储层参数字段。尽管在目标函数中存在用于推导这些方法的参数约束项,但是在这些方法的更新过程中很难保留参数字段的地质连续性。在估计各向异性方向不确定的统计各向异性场(例如统计各向异性高斯场和具有延长相的衰落场)的情况下尤其如此。在这项工作中,我们提出了一种基于Karhunen-Loeve展开的全局参数化技术,该技术与基于整体的历史匹配方法相结合,用于统计各向异性场的反演。通过使用Karhunen-Loeve展开,可以由一组独立的高斯随机变量对高斯随机场进行参数化。对于一个相场,我们将Karhunen-Loeve展开和水平集技术结合起来进行参数化。也就是说,对于每个相,我们使用高斯随机场和水平集算法对其进行参数化,然后通过Karhunen-Loeve展开进一步对高斯随机场进行参数化。我们将Karhunen-Loeve展开中的独立高斯随机变量作为模型参数。当统计各向异性场的各向异性方向不确定时,我们也将其视为用于更新的模型参数。在模型参数化之后,我们使用集合随机最大似然滤波器进行历史匹配。由于Karhunen-Loeve展开的性质,在更新过程中可以保留参数字段的地统计特征。建立了综合案例以测试所提出方法的性能。数值结果表明,该方法适用于统计各向异性场的估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号