首页> 外文期刊>Computational & Mathematical Organization Theory >Robustness of centrality measures under uncertainty: Examining the role of network topology
【24h】

Robustness of centrality measures under uncertainty: Examining the role of network topology

机译:不确定性下集中度度量的稳健性:检查网络拓扑的作用

获取原文
获取原文并翻译 | 示例

摘要

This study investigates the topological form of a network and its impact on the uncertainty entrenched in descriptive measures computed from observed social network data, given ubiquitous data-error. We investigate what influence a network's topology, in conjunction with the type and amount of error, has on the ability of a measure, derived from observed data, to correctly approximate the same of the ground-truth network. By way of a controlled experiment, we reveal the differing effect that observation error has on measures of centrality and local clustering across several network topologies: uniform random, small-world, core-periphery, scale-free, and cellular. Beyond what is already known about the impact of data uncertainty, we found that the topology of a social network is, indeed, germane to the accuracy of these measures. In particular, our experiments show that the accuracy of identifying the prestigious, or key, actors in a network-according observed data-is considerably predisposed by the topology of the ground-truth network.
机译:这项研究调查了网络的拓扑形式及其对不确定性的影响,这种不确定性是根据观察到的社交网络数据计算得出的描述性措施中给定的不确定性所根深蒂固的。我们结合误差的类型和数量,研究了网络拓扑对从观测数据得出的度量正确地近似真实地面网络的能力的影响。通过受控实验,我们揭示了观察误差对跨几种网络拓扑结构的集中度和局部聚类度量的不同影响:统一随机,小世界,核心外围,无标度和蜂窝网络。除了已知的关于数据不确定性的影响之外,我们发现社交网络的拓扑确实与这些度量的准确性息息相关。特别是,我们的实验表明,根据实测网络的拓扑结构,在网络中根据观察到的数据来确定重要角色或关键角色的准确性是非常不利的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号