首页> 外文期刊>Computational & Mathematical Organization Theory >Efficient experimental design tools for exploring large simulation models
【24h】

Efficient experimental design tools for exploring large simulation models

机译:用于探索大型仿真模型的高效实验设计工具

获取原文
获取原文并翻译 | 示例

摘要

Simulation experiments are typically faster, cheaper and more flexible than physical experiments. They are especially useful for pilot studies of complicated systems where little prior knowledge of the system behavior exists. One key characteristic of simulation experiments is the large number of factors and interactions between factors that impact decision makers. Traditional simulation approaches offer little help in analyzing large numbers of factors and interactions, which makes interpretation and application of results very difficult and often incorrect. In this paper we implement and demonstrate efficient design of experiments techniques to analyze large, complex simulation models. Looking specifically within the domain of organizational performance, we illustrate how our approach can be used to analyze even immense results spaces, driven by myriad factors with sometimes unknown interactions, and pursue optimal settings for different performance measures. This allows analysts to rapidly identify the most important, results-influencing factors within simulation models, employ an experimental design to fully explore the simulation space efficiently, and enhance system design through simulation. This dramatically increases the breadth and depth of insights available through analysis of simulation data, reduces the time required to analyze simulation-driven studies, and extends the state of the art in computational and mathematical organization theory.
机译:与物理实验相比,模拟实验通常更快,更便宜且更灵活。它们对于复杂的系统的先导研究特别有用,因为这些系统很少了解系统行为。模拟实验的关键特征之一是影响决策者的因素众多,因素之间也相互作用。传统的模拟方法在分析大量因素和相互作用时几乎没有帮助,这使得结果的解释和应用非常困难,而且常常是不正确的。在本文中,我们实施并演示了有效的实验技术设计,以分析大型,复杂的仿真模型。着眼于组织绩效领域,我们将说明如何使用我们的方法来分析由众多因素(有时具有未知的相互作用)驱动的甚至巨大的结果空间,并为不同的绩效指标寻求最佳设置。这使分析人员可以快速识别仿真模型中最重要的,影响结果的因素,采用实验设计来有效地充分探索仿真空间,并通过仿真来增强系统设计。这极大地增加了通过分析模拟数据可获得的见解的广度和深度,减少了分析模拟驱动研究所需的时间,并扩展了计算和数学组织理论的最新水平。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号