首页> 外文期刊>Composite Structures >Effect of extreme in-plane and transverse stiffness ratios on frequencies and load transfer between face sheets and core of rectangular sandwich plates
【24h】

Effect of extreme in-plane and transverse stiffness ratios on frequencies and load transfer between face sheets and core of rectangular sandwich plates

机译:极端面内刚度比对矩形三明治板面板频率和载荷转动的影响

获取原文
获取原文并翻译 | 示例

摘要

Challenging issues for sandwich structures include accurately finding their frequencies and how the load transfers from face sheets to the core when their material stiffness ratio (FCSR) in either the axial or the transverse directions varies from 1 to 10(7). Here we use both the equivalent single layer and the layer wise shear and normal deformable plate theories to analyze problems for rectangular plates of different thickness/length ratios. The Ritz method with Jacobi polynomials as basis functions is employed to numerically solve three-dimensional linear elasticity theory equations. Transverse stresses are calculated using a one-step stress recovery scheme. It is found that the FCSR in the transverse direction determines the minimum degree of complete polynomials in the thickness coordinate needed to accurately compute the lowest six frequencies and the transverse stresses. New results include the following: (i) the FCSR in the transverse direction has a greater influence than that in the axial direction on the computed frequencies and transverse stresses, and (ii) whereas both transverse normal and shear stresses in the core contribute to transmitting loads between the two face sheets for FCSR 10(3), however, only the former is effective for FCSR = 10(5).
机译:夹层结构的挑战性问题包括准确地找到它们的频率以及当轴向或横向的材料刚度比(FCSR)在1至10(7)之间时,如何将负载从面部纸张转移到芯。在这里,我们使用等效的单层和层明智的剪切和正常可变形的钢板理论来分析不同厚度/长度比的矩形板的问题。用Jacobi多项式作为基函数的RITZ方法用于数值求解三维线性弹性理论方程。使用一步应力恢复方案计算横向应力。发现横向的FCSR确定精确计算最低六频率和横向应力所需的厚度坐标中的完全多项式的最小程度。新结果包括以下内容:(i)横向上的FCSR具有比计算频率和横向应力的轴向方向上的影响力更大,而(ii)磁芯中的横向正常和剪切应力均有助于传输用于FCSR&LT的两个面板之间的负载。然而,10(3)只有前者对于FCSR&GT有效; = 10(5)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号