首页> 外文期刊>Composite Structures >A novel mixed finite element formulation based on the refined zigzag theory for the stress analysis of laminated composite plates
【24h】

A novel mixed finite element formulation based on the refined zigzag theory for the stress analysis of laminated composite plates

机译:一种基于精细锯齿形理论的新型混合有限元制剂,用于叠层复合板应力分析

获取原文
获取原文并翻译 | 示例

摘要

This study presents an accurate mixed variational formulation for the stress analysis of laminated composite plates based on Refined Zigzag Theory (RZT). A two-field variational concept based on the HellingerReissner (HR) principle is employed associated with the kinematic assumptions of the RZT. The RZT provides a good mixture between the accuracy and computational efficiency for the thin and thick laminated composite structures without using the shear correction factors. A four-noded quadrilateral element and bi-linear shape functions are used for the discretization of the solution domain ensuring the C0-continuity. The main novelty of the present study is that the flexural behavior of the laminated composite plates is investigated based on RZT within the light of HR principle using monolithic approach for the first time. The proposed Mixed Finite Element (MFE) formulation assigns stress resultant type field variables in addition to the kinematic variables of the RZT. Therefore, the present approach, MRZT, paves the way of obtaining the stress resultants at each node directly from the solution of the system equations. Since the shear forces are obtained at each node, Equivalent (transformed) Section Principle (ESP) is utilized to achieve continuous through thickness transverse shear stress variations. In-plane strain components are calculated through the compliance matrix without resorting to the spatial derivatives of displacement components. The robustness and capability of the present approach are established through benchmark problems, and its applicability to challenging problems is demonstrated by modeling thick and highly heterogeneous plates, a delaminated plate and three-point bending tests.
机译:该研究提出了一种基于精制之曲曲线理论(RZT)的层压复合板应力分析的精确混合变分制剂。基于HellaGerReissner(HR)原理的双场变分概念与RZT的运动学假设相关联。 RZT在不使用剪切校正因子的情况下为薄和厚的层压复合结构的精度和计算效率提供良好的混合物。四点状的四边形元件和双线性形状函数用于解决方案域的离散化,确保C0连续性。本研究的主要新颖性是,首次使用单片方法在HR原理的光线下基于RZT研究层压复合板的弯曲行为。除了RZT的运动变量之外,所提出的混合有限元(MFE)制剂还分配应力结果类型场变量。因此,目前的方法MRZT铺平了直接从系统方程的解决方案在每个节点处获得应力结果的方式。由于在每个节点处获得剪切力,因此使用等效(变换的)部分原理(ESP)来实现连续的通过厚度横向剪切应力变化。通过顺应矩阵计算面内应变组分,而不借助位移组分的空间衍生物。通过基准问题建立本方法的鲁棒性和能力,通过建模厚度和高度异构板,分层板和三点弯曲试验来证明其对具有挑战性问题的适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号