首页> 外文期刊>Composite Structures >Geometric non-linear analysis of composite laminated plates with initial imperfection under end shortening, using two versions of finite strip method
【24h】

Geometric non-linear analysis of composite laminated plates with initial imperfection under end shortening, using two versions of finite strip method

机译:使用两种形式的有限条法,对末端缩短后具有初始缺陷的复合层压板进行几何非线性分析

获取原文
获取原文并翻译 | 示例

摘要

Description is given of both spline and semi-analytical finite strip method for predicting the post-buckling response of rectangular composite laminated plates with initial imperfections, when subjected to progressive end shortening. The initial imperfections are all assumed to be of the sinusoidal shape in the longitudinal direction, and of different shapes in the transverse direction. The laminates are simply supported out of their plane at the loaded ends as well as unloaded edges. The in-plane lateral expansion v is allowed all around the plates. The plates are assumed to be thin so that the analysis can be carried out based on the classical plate theory. Geometric non-linearity is introduced in the strain-displacement equations in the manner of the von Karman assumptions. The formulations of the finite strip methods are based on the concept of the principle of the minimum potential energy. The Newton-Raphson method is used to solve the non-linear equilibrium equations. A number of applications involving plates with different shapes of initial imperfections are described to investigate the capability of both versions of finite strip method.
机译:给出了样条曲线和半解析有限条法的两种方法,这些方法用于预测在进行渐进末端缩短时具有初始缺陷的矩形复合层压板的屈曲后响应。初始缺陷均假定为在纵向方向上为正弦形状,而在横向方向上为不同形状。简单地将层压板在其加载端和未加载边缘处支撑在其平面之外。平板周围的平面内横向膨胀量v是允许的。假定板是薄板,以便可以基于经典板理论进行分析。几何非线性以von Karman假设的方式引入到应变位移方程中。有限带方法的公式化基于最小势能原理的概念。牛顿-拉夫森法用于求解非线性平衡方程。描述了涉及具有不同初始缺陷形状的板的许多应用,以研究两种版本的有限条法的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号