首页> 外文期刊>Composite Structures >A nonlinear zigzag theory for finite element analysis of highly shear-deformable laminated anisotropic shells
【24h】

A nonlinear zigzag theory for finite element analysis of highly shear-deformable laminated anisotropic shells

机译:非线性曲折理论用于高剪切变形叠层各向异性壳的有限元分析

获取原文
获取原文并翻译 | 示例

摘要

A hitherto unavailable highly accurate nonlinear finite element method (FEM)-based analysis technique for the prediction of large deformation response of highly shear-flexible arbitrarily laminated general shells of arbitrary geometry is presented. The nonlinear finite element utilizes the method of virtual work, and total Lagrangian (TL) formulation. It is based on the assumptions of transverse inex-tensibility, vanishing transverse normal strain, and layer-wise constant shear-angle theory (LCST), also known as the zigzag theory. The analysis includes fully nonlinear strain-displacement relations for the remaining five strain components. The components of displacements and stresses are computed using variable-node layer-elements of triangular plan-form.
机译:提出了一种迄今尚不可用的基于高精度非线性有限元(FEM)的分析技术,用于预测任意几何形状的高剪切挠性任意层合的普通壳体的大变形响应。非线性有限元利用虚拟功的方法和总拉格朗日(TL)公式表示。它是基于以下假设的:横向不可拉伸性,横向法向应变消失以及层状恒定剪切角理论(LCST),也称为之字形理论。该分析包括其余五个应变分量的完全非线性应变-位移关系。位移和应力的分量是使用三角平面形式的可变节点层元素计算的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号