首页> 外文期刊>Composite Structures >Nonlinear bending analysis of functionally graded porous beams using the multiquadric radial basis functions and a Taylor series-based continuation procedure
【24h】

Nonlinear bending analysis of functionally graded porous beams using the multiquadric radial basis functions and a Taylor series-based continuation procedure

机译:使用多功夫径向基函数的功能梯度多孔光束的非线性弯曲分析及基于泰勒序列的延续过程

获取原文
获取原文并翻译 | 示例

摘要

In this paper, the nonlinear bending analysis of Functionally Graded Porous (FGP) beams is investigated using an efficient numerical algorithm associating a meshless collocation technique uses the Multiquadric Radial Basis Function (MQRBF) approximation method and a higher-order Taylor series-based continuation procedure. Material properties of the FGP beams are described by adopting a modified power-law function taking into account the effect of porosities. Based on the First Order Shear Deformation Theory (FSDT) of beams with the von-Karman kinematic hypothesis, the strong form of nonlinear equations is established. For an efficient application of the proposed numerical approach, a quadratic matrix strong form of the problem is presented. The resulting nonlinear equations are solved numerically with the proposed algorithm which leaned on the following three steps: a higher-order Taylor series expansion to transform the quadratic nonlinear equations into a sequence of linear ones, a meshless collocation technique based on MQRBF approximation method to solve numerically the resulting linear equations and a continuation procedure to get the whole solution branch. To demonstrate the robustness of the developed algorithm, convergence and validation studies have been carried out. Furthermore, the effects of power-law index, porosity volume fraction, Young's modulus ratio, loads and boundary conditions are investigated.
机译:在本文中,使用关联的无网格搭配技术的有效数值算法研究了功能梯度多孔(FGP)光束的非线性弯曲分析,使用多蓄径向基函数(MQRBF)近似方法和基于高阶泰勒序列的连续过程。通过考虑孔隙率的效果,描述了FGP光束的材料特性。基于横梁的第一阶剪切变形理论(FSDT)与von-Karman运动假设,建立了强形式的非线性方程。为了有效应用所提出的数值方法,提出了一种二次矩阵的强烈形式的问题。结果非线性方程在数值上用倾斜的算法来解决以下三个步骤:高阶泰勒序列扩展以将二次非线性方程转换为线性序列,基于MQRBF近似方法的无网粘连技术在数值上是由此产生的线性方程和延续过程来获取整个解决方案分支。为了展示发达算法的稳健性,已经进行了收敛性和验证研究。此外,研究了幂律指标,孔隙率分数,杨氏模量,载荷和边界条件的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号