首页> 外文期刊>Composite Structures >Closed-form approximate solution for linear buckling of Mindlin plates with SRSR-boundary conditions
【24h】

Closed-form approximate solution for linear buckling of Mindlin plates with SRSR-boundary conditions

机译:SRSR边界条件的Mindlum Plates线性屈曲的闭合形式近似解

获取原文
获取原文并翻译 | 示例

摘要

The present work deals with the buckling analysis of rectangular Mindlin plates consisting of laminated composites with symmetrical, balanced lay-up or isotropic materials. Along the longitudinal edges the plate is rotationally restrained by springs. The transversal edges are simply supported. In agreement with common notation, the boundary conditions are abbreviated as follows: simply supported (S), rotationally restrained (R), and fully clamped (C). As loading situation axial compression is considered. Aiming at high computational efficiency the problem is solved by the Rayleigh-Ritz-method. Since well suited shape functions for deflection and rotations with very few variables are used, closed-form approximate solutions for the buckling load can be obtained. For verification exact transcendental solutions and/or high fidelity finite element analyses are employed. Additionally, results are compared to those of existing closed-form approximate solutions.Apart from the special case of simply supported longitudinal edges where all methods yield exact or nearly exact results, the present method shows clear advantages: 1. Due to the type of shape functions it is able deal with unsymmetrical boundary conditions. 2. For the case of both longitudinal edges fully clamped where all closed-form approximate solutions show the greatest deviations the present method is significantly more accurate.
机译:本工作涉及由具有对称,平衡叠层或各向同性材料的层压复合材料组成的矩形思维板的屈曲分析。沿着纵向边缘,板通过弹簧旋转地抑制。简单地支持横向边缘。在与公共符号的协议中,边界条件缩写如下:简单地支持(S),旋转限制(R),并完全夹紧(C)。随着装载情况轴向压缩。针对高计算效率,通过瑞利-Ritz方法解决了问题。由于使用偏转和具有很少变量的偏转的良好形状功能,因此可以获得用于屈曲负荷的闭合近似解。为了验证,采用精确的超越解决方案和/或高保真有限元分析。另外,结果与现有的闭合形式近似解决方案的结果进行了比较。从简单地支持的纵向边缘的特殊情况下,所有方法都产生精确或几乎精确的结果,本方法显示出明显的优势:1。由于形状的类型它能够处理不对称的边界条件。 2.对于纵向边缘的情况完全夹紧,在所有闭合形式的近似解决方案显示最大的偏差,本方法明显更准确。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号