首页> 外文期刊>Composite Structures >Investigating geometrically nonlinear vibrations of laminated shallow shells with layers of variable thickness via the R-functions theory
【24h】

Investigating geometrically nonlinear vibrations of laminated shallow shells with layers of variable thickness via the R-functions theory

机译:通过R函数理论研究厚度可变的层状薄壳的几何非线性振动

获取原文
获取原文并翻译 | 示例

摘要

A novel numerical/analytical approach to study geometrically nonlinear vibrations of shells with variable thickness of layers is proposed. It enables investigation of shallow shells with complex forms and different boundary conditions. The proposed method combines application of the R-functions theory, variational Ritz's method, as well as hybrid Bubnov-Galerkin method and the fourth-order Runge-Kutta method. Mainly two approaches, classical and first-order shear deformation theories of shells are used. An original scheme of discretization regarding time reduces the initial problem to the solution of a sequence of linear problems including those related to linear vibrations with a special type of elasticity, as well as problems governed by non-linear system of ordinary differential equations. The proposed method is validated by the investigation of test problems for shallow shells with rectangular planform and applied to new vibration problems for shallow shells with complex planforms and variable thickness of layers. (C) 2015 Elsevier Ltd. All rights reserved.
机译:提出了一种新颖的数值/解析方法来研究层厚度可变的壳体的几何非线性振动。它可以研究具有复杂形式和不同边界条件的浅壳。所提出的方法结合了R函数理论,变分Ritz方法以及混合Bubnov-Galerkin方法和四阶Runge-Kutta方法的应用。主要采用两种方法,壳的经典和一阶剪切变形理论。关于时间的离散化的原始方案将最初的问题简化为一系列线性问题的解决方案,包括与具有特殊类型的弹性的线性振动有关的问题,以及由常微分方程的非线性系统控制的问题。通过研究矩形平面浅壳的测试问题验证了该方法的有效性,并将其应用于复杂平面形,层厚度可变的浅壳的新振动问题。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号