首页> 外文期刊>Composite Structures >Higher-order closed-form solution for the analysis of laminated composite and sandwich plates based on new shear deformation theories
【24h】

Higher-order closed-form solution for the analysis of laminated composite and sandwich plates based on new shear deformation theories

机译:基于新剪切变形理论的层合板和夹层板分析的高阶封闭形式解

获取原文
获取原文并翻译 | 示例

摘要

In the present study, new shear deformation theories (algebraic (ADT), exponential (EDT), hyperbolic (HDT), logarithmic (LDT) and trigonometric (TDT)) were developed to analyze the static, buckling and free vibration responses of laminated composite and sandwich plates using Navier closed form solution technique. The present theories assume parabolic variation of transverse shear stresses through the depth of the plate. Besides, the transverse shear stresses vanish at the top and bottom of the plate surfaces. Thus, the necessity of shear correction factor is evaded. The governing differential equations and boundary conditions are obtained from the virtual work principle. Like FSDT, the present models consist of 5 unknowns. The shear stress parameter m that involves in shear strain function is selected through inverse method. To verify the accuracy and applicability of the present models, numerical comparisons were made with 3D elasticity solutions and existing theories. From the obtained results, it is observed that the proposed shear strain functions have significant effects on structural responses. Also, it is observed that the present theories are more accurate than the renowned theory, for the static, buckling and free vibration analysis of laminated plates. (C) 2015 Elsevier Ltd. All rights reserved.
机译:在本研究中,开发了新的剪切变形理论(代数(ADT),指数(EDT),双曲线(HDT),对数(LDT)和三角(TDT))来分析层状复合材料的静,屈曲和自由振动响应和三明治板使用Navier封闭形式解决方案技术。本理论假设贯穿板的深度的横向剪切应力呈抛物线变化。此外,横向剪切应力在板表面的顶部和底部消失。因此,避免了剪切校正因子的需要。从虚拟工作原理获得控制微分方程和边界条件。与FSDT一样,本模型包含5个未知数。通过逆方法选择涉及剪应变函数的剪应力参数m。为了验证当前模型的准确性和适用性,使用3D弹性解和现有理论进行了数值比较。从获得的结果可以看出,拟议的剪切应变函数对结构响应具有重大影响。此外,可以观察到,对于层压板的静态,屈曲和自由振动分析,当前的理论比著名的理论更为准确。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号