首页> 外文期刊>Composite Structures >The multiscale asymptotic expansion method for three-dimensional static analyses of periodical composite structures
【24h】

The multiscale asymptotic expansion method for three-dimensional static analyses of periodical composite structures

机译:周期复合结构三维静态分析的多尺度渐近展开法

获取原文
获取原文并翻译 | 示例

摘要

The decoupled multiscale asymptotic expansion method (MsAEM) is applied to the static analyses of three-dimensional (3D) periodical composite structures in this paper, and we focus on the attributes of the method in application. By comprehensive analyses and comparisons with finite element method, it is concluded that, 1) MsAEM can be viewed as the superposition method of different-order admissible deformation modes represented by influence functions; 2) the second-order expansion term is very necessary for the structure with considerable strain gradients; 3) the super unit cell approach can improve the computational accuracy of influence functions; 4) highly accurate differential quadrature finite element method can improve the computational efficiency of homogenized displacement and its derivatives; 5) the total potential energy is an effective measure to evaluate the computational accuracy. (C) 2017 Elsevier Ltd. All rights reserved.
机译:本文将解耦的多尺度渐近展开法(MsAEM)应用于三维(3D)期刊复合结构的静态分析,并重点研究该方法在应用中的属性。通过与有限元方法的综合分析和比较,得出以下结论:1)MsAEM可以看作是影响函数所代表的不同阶容许变形模式的叠加方法; 2)对于具有较大应变梯度的结构,二阶扩展项是非常必要的; 3)超级单元格方法可以提高影响函数的计算精度; 4)高精度的差分正交有限元方法可以提高均质位移及其导数的计算效率; 5)总势能是评估计算精度的有效方法。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号