首页> 外文期刊>Composite Structures >Thermal-structural post-bucking and limit-cycle oscillation of Functionally Graded Materials
【24h】

Thermal-structural post-bucking and limit-cycle oscillation of Functionally Graded Materials

机译:功能梯度材料的热结构后屈曲和极限循环振荡

获取原文
获取原文并翻译 | 示例

摘要

Thermal post-buckling and limit-cycle oscillation characteristics of Functionally Graded Material (FGM) structures are investigated based on the neutral surface concept. In particular, the material properties are non-homogeneous and vary gradually from one surface to the other. Furthermore, the properties are to be considered as temperature-dependent characteristics, and the neutral surface concept is adopted instead of the mid-plane to consider the reference plane due to the asymmetric properties in the thickness direction of model. In the formulation, the First-order Shear Deformation Theory (FSDT) of plate is used, and the geometric nonlinearity is accounted for by the von Karman strain-displacement relations. Also, steady state thermal conduction effects are assumed as a one dimensional heat transfer on the surface of the structure. For the numerical analysis, the Newton-Raphson method is applied to solve the thermal post-buckling behavior, while Newmark's time integration method is employed to resolve the limit-cycle oscillation. In order to validate the analysis results, the results,of this paper based on the neutral surface are compared with the data from previous papers using the conventional approach for FGMs model. Finally, effects of the neutral surface on the non-linear thermo-mechanic behavior of structure are discussed in detail. (C) 2017 Elsevier Ltd. All rights reserved.
机译:基于中性表面概念,研究了功能梯度材料(FGM)结构的热后屈曲和极限循环振荡特性。特别地,材料特性是不均匀的,并且从一个表面到另一表面逐渐变化。此外,由于模型的厚度方向上的非对称特性,因此应将特性视为与温度相关的特性,并且采用中性表面概念代替中平面来考虑参考平面。在公式中,使用了板的一阶剪切变形理论(FSDT),几何非线性是由von Karman应变-位移关系引起的。同样,稳态热传导效应被假定为结构表面上的一维热传递。为了进行数值分析,采用牛顿-拉夫森方法来求解热后屈曲行为,而采用纽马克的时间积分方法来解决极限环振动。为了验证分析结果,将本文基于中性表面的结果与以前使用FGMs模型的传统方法得到的数据进行比较。最后,详细讨论了中性表面对结构非线性热力学行为的影响。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号