首页> 外文期刊>Composite Structures >A nonlocal strain gradient refined plate theory for dynamic instability of embedded graphene sheet including thermal effects
【24h】

A nonlocal strain gradient refined plate theory for dynamic instability of embedded graphene sheet including thermal effects

机译:非局部应变梯度精制板理论用于包括热效应在内的嵌入式石墨烯片的动态不稳定性

获取原文
获取原文并翻译 | 示例

摘要

In this study, nonlocal strain gradient theory (NSGT) is applied to examine the dynamic instability of embedded viscoelastic graphene sheet under periodic axial load including thermal effects. The foundation is simulated by visco-Pasternak model containing springs, dampers and a shear layer. The motion equations are derived according to the four-variable refined shear deformation plate theory and via Hamilton's principle. The equations are converted into a linear system of Mathieu-Hill equations by means of Navier's method. Afterwards, Bolotin's approach is utilized to determine the principle unstable region of graphene sheet. The influences of nonlocal parameter, structural damping coefficient, length scale parameter, static load factor, temperature variation, foundation type as well as aspect ratio on the dynamic stability of graphene sheet are investigated. Based on the numerical results, it is indicated that with enlarging the nonlocal parameter, static load factor and temperature change, the excitation frequency decreases and so, instability region shifts to left side while the effect of length scale parameter is on the contrary. Additionally, it is indicated that when the length scale parameter enhances, the effects of temperature and foundation on the instability region of graphene sheet reduce.
机译:在这项研究中,应用非局部应变梯度理论(NSGT)来研究包埋的粘弹性石墨烯片在周期性轴向载荷(包括热效应)下的动态不稳定性。地基通过包含弹簧,阻尼器和剪力层的visco-Pasternak模型进行模拟。运动方程是根据四变量精细剪切变形板理论并通过汉密尔顿原理得出的。借助Navier方法,将这些方程转换为Mathieu-Hill方程的线性系统。之后,采用Bolotin的方法确定石墨烯片的主要不稳定区域。研究了非局部参数,结构阻尼系数,长度比例参数,静态载荷系数,温度变化,地基类型以及纵横比对石墨烯片动态稳定性的影响。根据数值结果表明,随着非局部参数,静载系数和温度变化的增大,激励频率降低,不稳定性区域向左侧移动,而长度尺度参数的影响相反。另外,表明当长度尺度参数增加时,温度和粉底对石墨烯片的不稳定性区域的影响减小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号