首页> 外文期刊>Complex Analysis and Operator Theory >Meromorphic Factorization Revisited and Application to Some Groups of Matrix Functions
【24h】

Meromorphic Factorization Revisited and Application to Some Groups of Matrix Functions

机译:亚纯分解论及其在某些矩阵函数中的应用

获取原文
获取原文并翻译 | 示例

摘要

Some properties and applications of meromorphic factorization of matrix functions are studied. It is shown that a meromorphic factorization of a matrix function G allows one to characterize the kernel of the Toeplitz operator with symbol G without actually having to previously obtain a Wiener–Hopf factorization. A method to turn a meromorphic factorization into a Wiener–Hopf one which avoids having to factorize a rational matrix that appears, in general, when each meromorphic factor is treated separately, is also presented. The results are applied to some classes of matrix functions for which the existence of a canonical factorization is studied and the factors of a Wiener–Hopf factorization are explicitly determined.
机译:研究了矩阵函数亚纯分解的一些性质和应用。结果表明,矩阵函数G的亚纯分解使人们可以用符号G来表征Toeplitz算子的核,而实际上不必事先获得Wiener-Hopf分解。还提出了一种将亚纯分解分解为Wiener-Hopf的方法,该方法避免了必须分解出现的有理矩阵,通常,当分别处理每个亚纯因子时,会出现这种分解。将结果应用于某些类别的矩阵函数,针对这些矩阵函数研究了规范分解的存在,并明确确定了Wiener-Hopf分解的因子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号