首页> 外文期刊>Communications in Statistics - Simulation and Computation >Empirical Study of Six Tests for Equalityof Populations with Zero-Inflated Continuous Distributions
【24h】

Empirical Study of Six Tests for Equalityof Populations with Zero-Inflated Continuous Distributions

机译:具有零膨胀连续分布的总体等式的六项检验的经验研究

获取原文
获取原文并翻译 | 示例

摘要

We evaluated the properties of six statistical methods for testing equality among populations with zero-inflated continuous distributions. These tests are based on likelihood ratio (LR), Wald, central limit theorem (CLT), modified CLT (MCLT), parametric jackknife (PJ), and nonparametric jackknife (NPJ) statistics. We investigated their statistical properties using simulated data from mixed distributions with an unknown portion of non zero observations that have an underlying gamma, exponential, or log-normal density function and the remaining portion that are excessive zeros. The 6 statistical tests are compared in terms of their empirical Type I errors and powers estimated through 10,000 repeated simulated samples for carefully selected configurations of parameters. The LR, Wald, and PJ tests are preferred tests since their empirical Type I errors were close to the preset nominal 0.05 level and each demonstrated good power for rejecting null hypotheses when the sample sizes are at least 125 in each group. The NPJ test had unacceptable empirical Type I errors because it rejected far too often while the CLT and MCLT tests had low testing powers in some cases. Therefore, these three tests are not recommended for general use but the LR, Wald, and PJ tests all performed well in large sample applications.
机译:我们评估了六种统计方法的特性,以检验零膨胀连续分布的人群之间的平等性。这些测试基于似然比(LR),Wald,中心极限定理(CLT),修改的CLT(MCLT),参数折刀(PJ)和非参数折刀(NPJ)统计数据。我们使用来自混合分布的模拟数据调查了它们的统计属性,这些数据具有未知的非零观测值部分,这些非零观测值具有基础的伽马,指数或对数正态密度函数,而其余部分则为零。比较了这6种统计测试的经验I型错误和通过10,000个重复的模拟样本估算出的功率,并仔细选择了参数配置。 LR,Wald和PJ检验是首选检验,因为它们的I型经验误差接近预设的标称0.05水平,并且当每组样本量至少为125时,每个检验都具有拒绝无效假设的良好能力。 NPJ测试具有无法接受的I类经验错误,因为它拒绝的次数太多,而CLT和MCLT测试在某些情况下的测试能力很低。因此,不建议将这三个测试用于一般用途,但是LR,Wald和PJ测试在大型样品应用中均表现良好。

著录项

  • 来源
  • 作者

    Lei Zhang;

  • 作者单位

    Mississippi State Department of Health, Office of Health Data and Research, Mississippi, USA;

    Plant Science Department, South Dakota State University, Brookings, South Dakota, USA;

    Pennington Biomedical Research Center, Louisiana State University, Baton;

  • 收录信息 美国《科学引文索引》(SCI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号