首页> 外文期刊>Communications in Statistics - Simulation and Computation >Estimation Mean Change-Point in ARCH Models with Heavy-Tailed Innovations
【24h】

Estimation Mean Change-Point in ARCH Models with Heavy-Tailed Innovations

机译:具有重尾创新的ARCH模型中的估计均值变化点

获取原文
获取原文并翻译 | 示例

摘要

The quest of the mean change-point in ARCH models with innovations in the domain of attraction of a κ-stable law appears to still be ongoing. We derive the asymptotic distribution of the residuals CUSUM of squares test (RCUSQ) statistic and find it depends on the stable index κ which is often typically unknown and difficult to estimate. Therefore, the subsampling method is proposed to detect changes without estimating κ. The tests are easy to use and are found to perform well in a Monte Carlo experiment.
机译:在ARCH模型中寻求创新的ARCH模型中均值变化点似乎仍在进行中。我们推导了残差CUSUM平方检验(RCUSQ)统计量的渐近分布,并发现它取决于稳定指数,后者通常通常是未知的并且难以估计。因此,建议使用二次采样方法来检测变化而无需估计。这些测试易于使用,并且在蒙特卡洛实验中表现良好。

著录项

  • 来源
  • 作者

    Hao Jin; Yunfeng Yang;

  • 作者单位

    School of Science, Xi'an University of Science and Technology, Xi'an, P.R. China;

    Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an, P.R. China;

    State Key Laboratory of Remote Sensing Science, Chinese Academy of Sciences, B;

  • 收录信息 美国《科学引文索引》(SCI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号