首页> 外文期刊>Communications in Statistics - Simulation and Computation >A Regression Model for the AUC of Clustered Ordinal Test Results and Working Independent Optimal Weights
【24h】

A Regression Model for the AUC of Clustered Ordinal Test Results and Working Independent Optimal Weights

机译:聚类序数检验结果和独立工作的最佳权重的AUC回归模型

获取原文
获取原文并翻译 | 示例

摘要

We study a regression model on the area under the receiver operating characteristic curves (AUC) for clustered (or repeatedly measured) test results. To account for cluster information, we consider a weighted estimating equation for Dodd and Pepe (20035. Dodd , L. , Pepe , M. ( 2003 ). Semiparametric regression for the area under the receiver operating charateristic curve . Journal of the American Statistical Association 98 : 409 - 417 . [Taylor & Francis Online], [Web of Science ®]View all references)'s regression model with working independence weights. We find the optimal weight in the given class of working independence weights to minimize the variance (or MSE) of regression estimators. We apply the proposed procedure to analyzing our recent experiment on diagnosing a liver disorder. In this experiment, we investigated MRI images of patients having symptoms of potential liver disorder to compare the performance of different MRI picturing methods in testing for liver disorders.
机译:我们针对接收器工作特性曲线(AUC)下的区域研究了一个回归模型,以进行聚类(或反复测量)测试结果。为了说明聚类信息,我们考虑了Dodd和Pepe(20035. Dodd,L.,Pepe,M.(2003)。接收器工作特征曲线下面积的半参数回归)的加权估计方程。 98:409-417。[Taylor&Francis Online],[Web of Science®]查看所有参考文献)具有工作独立权重的回归模型。我们在给定的工作独立权重类别中找到最佳权重,以最小化回归估计量的方差(或MSE)。我们将提出的程序用于分析我们最近诊断肝脏疾病的实验。在本实验中,我们调查了具有潜在肝病症状的患者的MRI图像,以比较不同MRI成像方法在测试肝病中的表现。

著录项

  • 来源
  • 作者

    Johan Lim;

  • 作者单位

    Department of Statistics, Seoul National University, Seoul, Korea;

    Department of Statistics, Inha University, Incheon, Korea;

    Department of Biostatistics and Bioinformatice and CALGB Statistical Center, Duke University, North Carolina, USA;

    Department;

  • 收录信息 美国《科学引文索引》(SCI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号