首页> 外文期刊>Communications in Statistics >On the improvement of the parameter estimation of the grey model GM(1,1) and model application
【24h】

On the improvement of the parameter estimation of the grey model GM(1,1) and model application

机译:关于改进灰色模型GM(1,1)和模型应用的参数估计

获取原文
获取原文并翻译 | 示例

摘要

The GM(1,1) model has been applied widely for grey prediction. However, traditional GM(1,1) model prediction sometimes results in large errors. In recent years, the grey model GM(1,1) has been improved, and the research mainly focuses on the modification, extension, and optimization of it. Most of the methods change the basic structure of the model. The study aims to improve the model's parameter estimation without changing the model's structure by using the following four methods: (1) optimizing the generating coefficient and estimating the model's parameters in the case of the optimal generating coefficient; (2) using the approximation by polynomial to estimate the model's parameters as a whole, including the parameter estimation of initial value; (3) translating the grey differential equation into the difference equation to estimate the model's parameters with the difference equation; and (4) using the modern intelligent algorithm (that is, the improved particle swarm optimization algorithm) for parameter estimation. The study builds the GM(1,1) model of the total consumption of China's industrial crude oil using the four improved methods. The simulation and prediction results show that these methods all significantly improve the prediction accuracy of model.
机译:GM(1,1)模型已广泛应用于灰色预测。然而,传统的GM(1,1)模型预测有时会导致大错误。近年来,灰色模型(1,1)已得到改善,研究主要关注它的修改,扩展和优化。大多数方法改变了模型的基本结构。该研究旨在通过使用以下四种方法改善模型的参数估计,而无需改变模型结构:(1)在最佳产生系数的情况下优化产生系数并估计模型的参数; (2)通过多项式使用近似来估计模型的整体参数,包括初始值的参数估计; (3)将灰色微分方程转换为差分方程以估算模型参数的差分等式; (4)使用现代智能算法(即改进的粒子群优化算法)进行参数估计。该研究通过四种改进方法建立了中国工业原油总消费的GM(1,1)模型。仿真和预测结果表明,这些方法全部显着提高了模型的预测精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号