首页> 外文期刊>Communications in Statistics >Bayesian LASSO-Regularized quantile regression for linear regression models with autoregressive errors
【24h】

Bayesian LASSO-Regularized quantile regression for linear regression models with autoregressive errors

机译:贝叶斯套索定期大量的分位式回归,用于自动出口错误的线性回归模型

获取原文
获取原文并翻译 | 示例

摘要

Quantile regression (QR) is a natural alternative for depicting the impact of covariates on the conditional distributions of a outcome variable instead of the mean. In this paper, we investigate Bayesian regularized QR for the linear models with autoregressive errors. LASSO-penalized type priors are forced on regression coefficients and autoregressive parameters of the model. Gibbs sampler algorithm is employed to draw the full posterior distributions of unknown parameters. Finally, the proposed procedures are illustrated by some simulation studies and applied to a real data analysis of the electricity consumption.
机译:定量回归(QR)是描绘协变量对结果变量的条件分布而不是平均值的自然替代方案。在本文中,我们调查贝叶斯正规化QR,为具有自回归误差的线性模型。渡舟惩罚的类型前沿被迫对模型的回归系数和自回归参数。 GIBBS采样器算法用于绘制未知参数的完整后部分布。最后,通过一些模拟研究说明了所提出的程序,并应用于电力消耗的真实数据分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号