首页> 外文期刊>Communications in Statistics >Bayesian LASSO-Regularized quantile regression for linear regression models with autoregressive errors
【24h】

Bayesian LASSO-Regularized quantile regression for linear regression models with autoregressive errors

机译:具有自回归误差的线性回归模型的贝叶斯LASSO正则化分位数回归

获取原文
获取原文并翻译 | 示例

摘要

Quantile regression (QR) is a natural alternative for depicting the impact of covariates on the conditional distributions of a outcome variable instead of the mean. In this paper, we investigate Bayesian regularized QR for the linear models with autoregressive errors. LASSO-penalized type priors are forced on regression coefficients and autoregressive parameters of the model. Gibbs sampler algorithm is employed to draw the full posterior distributions of unknown parameters. Finally, the proposed procedures are illustrated by some simulation studies and applied to a real data analysis of the electricity consumption.
机译:分位数回归(QR)是描述协变量对结果变量的条件分布而不是均值的影响的自然选择。在本文中,我们研究了具有自回归误差的线性模型的贝叶斯正则QR。 LASSO罚分类型的先验被强加于模型的回归系数和自回归参数上。 Gibbs采样器算法用于绘制未知参数的全部后验分布。最后,通过一些仿真研究对提出的程序进行了说明,并将其应用于电力消耗的真实数据分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号