首页> 外文期刊>Communications in Statistics >Oracally efficient spline-backfitted kernel smoothing of additive partial linear measurement error model
【24h】

Oracally efficient spline-backfitted kernel smoothing of additive partial linear measurement error model

机译:附加部分线性测量误差模型的口头有效样条反拟合核平滑

获取原文
获取原文并翻译 | 示例

摘要

We consider statistical inference for additive partial linear models when the linear covariate is measured with error. A bias-corrected spline-backfitted kernel smoothing method is proposed. Under mild assumptions, the proposed component function and parameter estimator are oracally efficient and fast to compute. The nonparametric function estimator's pointwise distribution is asymptotically equivalent to an function estimator in partial linear model. Finite-sample performance of the proposed estimators is assessed by simulation experiments. The proposed methods are applied to Boston house data set.
机译:当线性协变量被误差测量时,我们考虑对附加部分线性模型的统计推断。提出了一种偏校正样条反拟合的核平滑方法。在温和的假设下,建议的分量函数和参数估计量在口头上是有效的,并且计算速度很快。非参数函数估计量的点向分布渐近等效于部分线性模型中的函数估计量。通过仿真实验评估了所提出估计量的有限样本性能。所提出的方法被应用于波士顿房屋数据集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号