首页> 外文期刊>Communications in Statistics >Variable selection in generalized estimating equations via empirical likelihood and Gaussian pseudo-likelihood
【24h】

Variable selection in generalized estimating equations via empirical likelihood and Gaussian pseudo-likelihood

机译:基于经验似然和高斯拟似然的广义估计方程中的变量选择

获取原文
获取原文并翻译 | 示例

摘要

AIC and BIC based on either empirical likelihood (EAIC and EBIC) or Gaussian pseudo-likelihood (GAIC and GBIC) are proposed to select variables in longitudinal data analysis. Their performances are evaluated in the framework of the generalized estimating equations via intensive simulation studies. Our findings are: (i) GAIC and GBIC outperform other existing methods in selecting variables; (ii) EAIC and EBIC are effective in selecting covariates only when the working correlation structure is correctly specified; (iii) GAIC and GBIC perform well regardless the working correlation structure is correctly specified or not. A real dataset is also provided to illustrate the findings.
机译:提出了基于经验似然(EAIC和EBIC)或高斯伪似然(GAIC和GBIC)的AIC和BIC来选择纵向数据分析中的变量。通过深入的仿真研究,在广义估计方程的框架内评估了它们的性能。我们的发现是:(i)GAIC和GBIC在选择变量方面优于其他现有方法; (ii)EAIC和EBIC仅在正确指定工作相关结构时才有效选择协变量; (iii)无论是否正确指定了工作相关结构,GAIC和GBIC都表现良好。还提供了一个真实的数据集来说明发现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号