首页> 美国政府科技报告 >Path Following Algorithm for Sparse Pseudo-Likelihood Inverse Covariance Estimation (SPLICE)
【24h】

Path Following Algorithm for Sparse Pseudo-Likelihood Inverse Covariance Estimation (SPLICE)

机译:稀疏伪似然逆协方差估计的路径跟踪算法(spLICE)

获取原文

摘要

Given n observations of a p-dimensional random vector, the covariance matrix and its inverse (precision matrix) are needed in a wide range of applications. Sample covariance (e.g. its eigenstructure) can misbehave when p is comparable to the sample size n. Regularization is often used to mitigate the problem. In this paper, we proposed an l1 penalized pseudo-likelihood estimate for the inverse covariance matrix. This estimate is sparse due to the l1 penalty, and we term this method SPLICE. Its regularization path can be computed via an algorithm based on the homotopy/LARS-Lasso algorithm. Simulation studies are carried out for various inverse covariance structures for p = 15 and n = 20; 1000. We compare SPLICE with the l1 penalized likelihood estimate and a l1 penalized Cholesky decomposition based method. SPLICE gives the best overall performance in terms of three metrics on the precision matrix and ROC curve for model selection. Moreover, our simulation results demonstrate that the SPLICE estimates are positive-definite for most of the regularization path even though the restriction is not enforced.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号