首页> 外文期刊>Communications in Statistics >A general algorithm for non-parametric maximum likelihood estimator of stochastically ordered survival functions from case 2 interval-censored data
【24h】

A general algorithm for non-parametric maximum likelihood estimator of stochastically ordered survival functions from case 2 interval-censored data

机译:基于案例2区间删失数据的随机排序生存函数的非参数最大似然估计的通用算法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we study an algorithm to compute the non-parametric maximum likelihood estimator of stochastically ordered survival functions from case 2 interval-censored data. The algorithm, simply denoted by SQP (sequential quadratic programming), re-parameterizes the likelihood function to make the order constraints as a set of linear constraints, approximates the log-likelihood function as a quadratic function, and updates the estimate by solving a quadratic programming. We particularly consider two stochastic orderings, simple and uniform orderings, although the algorithm can also be applied to many other stochastic orderings. We illustrate the algorithm using the breast cancer data reported in Finkelstein and Wolfe (1985).
机译:在本文中,我们研究了一种从案例2间隔删失数据计算随机有序生存函数的非参数最大似然估计器的算法。该算法简单地用SQP(顺序二次规划)表示,将似然函数重新参数化以使阶数约束成为一组线性约束,将对数似然函数近似为二次函数,并通过求解二次方程来更新估计编程。尽管该算法还可以应用于许多其他随机排序,但是我们特别考虑了两种随机排序,即简单排序和统一排序。我们使用Finkelstein和Wolfe(1985)报告的乳腺癌数据说明该算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号