首页> 外文期刊>Communications in Statistics >Marginal maximum likelihood estimation methods for the tuning parameters of ridge, power ridge, and generalized ridge regression
【24h】

Marginal maximum likelihood estimation methods for the tuning parameters of ridge, power ridge, and generalized ridge regression

机译:脊,幂脊和广义脊回归的调整参数的边际最大似然估计方法

获取原文
获取原文并翻译 | 示例

摘要

This study introduces fast marginal maximum likelihood (MML) algorithms for estimating the tuning (shrinkage) parameter(s) of the ridge and power ridge regression models, and an automatic plug-in MML estimator for the generalized ridge regression model, in a Bayesian framework. These methods are applicable to multicollinear or singular covariate design matrices, including matrices where the number of covariates exceeds the sample size. According to analyses of many real and simulated datasets, these MML-based ridge methods tend to compare favorably to other tuning parameter selection methods, in terms of computation speed, prediction accuracy, and ability to detect relevant covariates.
机译:这项研究引入了快速边际最大似然(MML)算法,用于估计岭和幂脊回归模型的调整(收缩)参数,以及在贝叶斯框架中针对广义岭回归模型的自动插件MML估计器。这些方法适用于多共线性或奇异协变量设计矩阵,包括协变量数超过样本大小的矩阵。根据对许多真实和模拟数据集的分析,这些基于MML的岭方法在计算速度,预测准确性和检测相关协变量的能力方面,倾向于与其他调整参数选择方法进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号