首页> 外文期刊>Communications in Statistics >Clustering the mixed panel dataset using Gower's distance and k-prototypes algorithms
【24h】

Clustering the mixed panel dataset using Gower's distance and k-prototypes algorithms

机译:使用Gower距离和k-原型算法对混合面板数据集进行聚类

获取原文
获取原文并翻译 | 示例

摘要

Panel datasets have been increasingly used in economics to analyze complex economic phenomena. Panel data is a two-dimensional array that combines cross-sectional and time series data. Through constructing a panel data matrix, the clustering method is applied to panel data analysis. This method solves the heterogeneity question of the dependent variable, which belongs to panel data, before the analysis. Clustering is a widely used statistical tool in determining subsets in a given dataset. In this article, we present that the mixed panel dataset is clustered by agglomerative hierarchical algorithms based on Gower's distance and by k-prototypes. The performance of these algorithms has been studied on panel data with mixed numerical and categorical features. The effectiveness of these algorithms is compared by using cluster accuracy. An experimental analysis is illustrated on a real dataset using Stata and R package software.
机译:面板数据集已在经济学中越来越多地用于分析复杂的经济现象。面板数据是结合了横截面和时间序列数据的二维数组。通过构造面板数据矩阵,将聚类方法应用于面板数据分析。该方法在分析之前解决了属于面板数据的因变量的异质性问题。聚类是确定给定数据集中子集的一种广泛使用的统计工具。在本文中,我们提出混合面板数据集由基于高尔距离的聚集层次算法和k原型聚类。已经对具有混合数值和分类特征的面板数据研究了这些算法的性能。通过使用聚类精度比较了这些算法的有效性。使用Stata和R软件包在真实数据集上说明了实验分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号