首页> 外文期刊>Communications in Statistics >Estimation for the censored partially linear quantile regression models
【24h】

Estimation for the censored partially linear quantile regression models

机译:删失部分线性分位数回归模型的估计

获取原文
获取原文并翻译 | 示例

摘要

In this article, we develop estimation procedures for partially linear quantile regression models, where some of the responses are censored by another random variable. The nonparametric function is estimated by basis function approximations. The estimation procedure is easy to implement through existing weighted quantile regression, and it requires no specification of the error distributions. We show the large-sample properties of the resulting estimates, the proposed estimator of the regression parameter is root-n consistent and asymptotically normal and the estimator of the functional component achieves the optimal convergence rate of the nonparametric function. The proposed method is studied via simulations and illustrated with the analysis of a primary biliary cirrhosis (BPC) data.
机译:在本文中,我们为部分线性分位数回归模型开发了估计程序,其中某些响应被另一个随机变量检查。非参数函数由基本函数近似值估计。估计过程很容易通过现有的加权分位数回归来实现,并且不需要指定误差分布。我们显示了所得估计的大样本属性,所提出的回归参数的估计是根-n一致且渐近正态的,并且功能组件的估计达到了非参数函数的最优收敛速度。通过模拟研究提出的方法,并通过对原发性胆汁性肝硬化(BPC)数据的分析进行说明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号