首页> 外文期刊>Communications in Statistics. B, Simulation and Computation >Robust Model-based Inference For Incomplete Data Via Penalized Spline Propensity Prediction
【24h】

Robust Model-based Inference For Incomplete Data Via Penalized Spline Propensity Prediction

机译:基于惩罚性样条倾向预测的不完全数据的基于模型的鲁棒推断

获取原文
获取原文并翻译 | 示例

摘要

Parametric model-based regression imputation is commonly applied to missing-data problems, but is sensitive to misspecification of the imputation model. Little and An (2004) proposed a semiparametric approach called penalized spline propensity prediction (PSPP), where the variable with missing values is modeled by a penalized spline (P-Spline) of the response propensity score, which is logit of the estimated probability of being missing given the observed variables. Variables other than the response propensity are included parametrically in the imputation model. However they only considered point estimation based on single imputation with PSPP. We consider here three approaches to standard errors estimation incorporating the uncertainty due to non response: (a) standard errors based on the asymptotic variance of the PSPP estimator, ignoring sampling error in estimating the response propensity; (b) standard errors based on the bootstrap method; and (c) multiple imputation-based standard errors using draws from the joint posterior predictive distribution of missing values under the PSPP model. Simulation studies suggest that the bootstrap and multiple imputation approaches yield good inferences under a range of simulation conditions, with multiple imputation showing some evidence of closer to nominal confidence interval coverage when the sample size is small.
机译:基于参数模型的回归插补通常应用于缺失数据问题,但对插补模型的错误指定很敏感。 Little and An(2004)提出了一种半参数方法,称为惩罚样条曲线倾向性预测(PSPP),其中具有缺失值的变量由响应倾向性得分的惩罚样条线(P-Spline)建模,这是估计概率的对数鉴于观察到的变量而缺失。归因模型中除参数外还包含响应倾向以外的变量。但是,他们只考虑了基于PSPP单一插补的点估计。我们在这里考虑三种标准误差估计方法,其中包括由于无响应而引起的不确定性:(a)基于PSPP估计量的渐近方差的标准误差,在估计响应倾向时忽略了采样误差; (b)基于引导方法的标准错误; (c)使用PSPP模型下缺失值的联合后验预测分布得出的基于多个归因的标准误差。仿真研究表明,自举和多重插补方法在一定范围的仿真条件下均能得出良好的推论,多重插补显示出一些证据,即样本量较小时,其接近标称置信区间覆盖率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号