首页> 外文期刊>Monte Carlo Methods and Applications >A Bayesian inference for the penalized spline joint models of longitudinal and time-to-event data: A prior sensitivity analysis
【24h】

A Bayesian inference for the penalized spline joint models of longitudinal and time-to-event data: A prior sensitivity analysis

机译:纵向和事件时间数据的惩罚样条联合模型的贝叶斯推断:先验灵敏度分析

获取原文
获取原文并翻译 | 示例

摘要

Bayesian approaches have been used in the literature to estimate the parameters for joint models of longitudinal and time-to-event data. The main aim of this paper is to analyze the impact of prior distributions on estimating parameters in a proposed fully Bayesian analysis setting for the penalized spline joint models. To achieve this aim, the joint posterior distribution of parameters in survival and longitudinal submodels is presented. The Markov chain Monte Carlo (MCMC) algorithm is then proposed, which consists of the Gibbs sampler (GS) and Metropolis Hastings (MH) algorithms to sample for the target conditional posterior distributions. The prior sensitivity analysis for the baseline hazard rate and association parameters is performed through simulation studies and a case study.
机译:在文献中已经使用贝叶斯方法来估计纵向和事件时间数据的联合模型的参数。本文的主要目的是在拟议的惩罚样条联合模型的完全贝叶斯分析设置中分析先验分布对估计参数的影响。为了达到这个目的,提出了生存和纵向子模型中参数的联合后验分布。然后提出了马尔可夫链蒙特卡罗(MCMC)算法,该算法由Gibbs采样器(GS)和Metropolis Hastings(MH)算法组成,以对目标条件后验分布进行采样。通过模拟研究和案例研究对基线危险率和关联参数进行了事先的敏感性分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号