首页> 外文期刊>Communications in Statistics >A Novel Estimation Approach for Mixture Transition Distribution Model in High-Order Markov Chains
【24h】

A Novel Estimation Approach for Mixture Transition Distribution Model in High-Order Markov Chains

机译:高阶马尔可夫链中混合过渡分布模型的一种新的估计方法

获取原文
获取原文并翻译 | 示例

摘要

A transformation is proposed to convert the nonlinear constraints of the parameters in the mixture transition distribution (MTD) model into box-constraints. The proposed transformation removes the difficulties associated with the maximum likelihood estimation (MLE) process in the MTD modeling so that the MLEs of the parameters can be easily obtained via a hybrid algorithm from the evolutionary algorithms and/or quasi-Newton algorithms for global optimization. Simulation studies are conducted to demonstrate MTD modeling by the proposed novel approach through a global search algorithm in R environment. Finally, the proposed approach is used for the MTD modelings of three real data sets.
机译:提出了一种将混合过渡分布(MTD)模型中参数的非线性约束转换为箱约束的变换。提出的变换消除了与MTD建模中的最大似然估计(MLE)过程相关的困难,因此可以通过混合算法从进化算法和/或拟牛顿算法中轻松获得参数的MLE,以进行全局优化。通过仿真研究,通过R环境中的全局搜索算法,通过提出的新颖方法演示了MTD建模。最后,所提出的方法用于三个真实数据集的MTD建模。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号