首页> 外文期刊>Communications in Statistics >Sample Complexity of Classifiers Taking Values in R~Q, Application to Multi-Class SVMs
【24h】

Sample Complexity of Classifiers Taking Values in R~Q, Application to Multi-Class SVMs

机译:在R〜Q中取值的分类器的样本复杂度,应用于多类SVM

获取原文
获取原文并翻译 | 示例

摘要

Bounds on the risk play a crucial role in statistical learning theory. They usually involve as capacity measure of the model studied the VC dimension or one of its extensions. In classification, such "VC dimensions" exist for models taking values in {0, 1}, [1, Q] and R. We introduce the generalizations appropriate for the missing case, the one of models with values in R~Q. This provides us with a new guaranteed risk for M-SVMs. For those models, a sharper bound is obtained by using the Rademacher complexity.
机译:风险界限在统计学习理论中起着至关重要的作用。它们通常涉及作为研究VC维度或其扩展之一的模型的容量度量。在分类中,这样的“ VC维数”对于采用{0,1},[1,Q]和R中的值的模型存在。我们介绍适用于缺失情况的概括,即具有R〜Q值的模型之一。这为我们提供了M-SVM的新保证风险。对于那些模型,通过使用Rademacher复杂度可以获得更清晰的界限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号