首页> 外文期刊>Communications in Statistics >Multivariate Two-Sided Tests for Normal Mean Vectors Based on Approximations of Likelihood Ratio Test
【24h】

Multivariate Two-Sided Tests for Normal Mean Vectors Based on Approximations of Likelihood Ratio Test

机译:基于似然比检验的正态向量的多元双向检验

获取原文
获取原文并翻译 | 示例

摘要

Assuming that all components of a normal mean vector are simultaneously non negative or non positive, we consider a multivariate two-sided test for testing whether the normal mean vector is equal to zero or not. Since the likelihood ratio test is accompanied with theoretical and computational complications, we discuss two kinds of approximations of the likelihood ratio test. One is based on a conservative critical value determined by a certain inequality. The other is constructed by the approximation of the likelihood ratio test proposed by Tang et al. (1989). We compare the likelihood ratio test and two kinds of approximations through numerical examples regarding critical values and the power of the test.
机译:假设正常均值向量的所有分量同时为非负或非正,我们考虑采用多元双向检验来测试正常均值向量是否等于零。由于似然比检验伴随着理论和计算上的复杂性,因此我们讨论似然比检验的两种近似。一个是基于由某些不平等确定的保守临界值。另一个是由Tang等人提出的近似似然比检验构建的。 (1989)。我们通过关于临界值和检验功效的数值示例比较似然比检验和两种近似值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号