首页> 外文期刊>Communications in Statistics >Comparing Two-Stage Segmentation Methods for Choice Data with a One-Stage Latent Class Choice Analysis
【24h】

Comparing Two-Stage Segmentation Methods for Choice Data with a One-Stage Latent Class Choice Analysis

机译:选择数据的两阶段分割方法与一阶段潜在类别选择分析的比较

获取原文
获取原文并翻译 | 示例

摘要

Market segmentation is a key concept in marketing research. Identification of consumer segments helps in setting up and improving a marketing strategy. Hence, the need is to improve existing methods and to develop new segmentation methods. We introduce two new consumer indicators that can be used as segmentation basis in two-stage methods, the forces and the dfbetas. Both bases express a subject's effect on the aggregate estimates of the parameters in a conditional logit model. Further, individual-level estimates, obtained by either estimating a conditional logit model for each individual separately with maximum likelihood or by hierarchical Bayes (HB) estimation of a mixed logit choice model, and the respondents' raw choices are also used as segmentation basis. In the second stage of the methods the bases are classified into segments with cluster analysis or latent class models. All methods are applied to choice data because of the increasing popularity of choice experiments to analyze choice behavior. To verify whether two-stage segmentation methods can compete with a one-stage approach, a latent class choice model is estimated as well. A simulation study reveals the superiority of the two-stage method that clusters the HB estimates and the one-stage latent class choice model. Additionally, very good results are obtained for two-stage latent class cluster analysis of the choices as well as for the two-stage methods clustering the forces, the dfbetas and the choices.
机译:市场细分是营销研究中的关键概念。识别消费者细分有助于建立和改善营销策略。因此,需要改进现有方法并开发新的分割方法。我们介绍了两个新的消费者指标,可以用作两阶段方法的细分基础,即力和dfbeta。这两个基础都表达了受试者对条件logit模型中参数的总体估计的影响。此外,通过分别以最大似然估计每个个体的条件对数模型或通过混合对数选择模型的分级贝叶斯(HB)估计而获得的个体水平估计,以及被调查者的原始选择,也可以用作细分基础。在方法的第二阶段,通过聚类分析或潜在类模型将基础分类为多个片段。由于选择实验越来越多地用于分析选择行为,因此将所有方法都应用于选择数据。为了验证两阶段分割方法是否可以与一阶段方法竞争,还估计了潜在的类别选择模型。仿真研究显示了将HB估计值与一阶段潜在类别选择模型聚类的两阶段方法的优越性。此外,对于选择的两阶段潜在类聚类分析以及对力,dfbeta和选择进行聚类的两阶段方法,都获得了很好的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号