首页> 外文期刊>Communications in Statistics >A New Test of Randomness for Lehmer Generators Based on the Manhattan Distance Between Pairs of Consecutive Random Numbers
【24h】

A New Test of Randomness for Lehmer Generators Based on the Manhattan Distance Between Pairs of Consecutive Random Numbers

机译:基于成对的连续随机数之间的曼哈顿距离的Lehmer发生器随机性的新检验

获取原文
获取原文并翻译 | 示例

摘要

This article considers the Marsaglia effect by proposing a new test of randomness for Lehmer random number generators. Our test is based on the Manhattan distance criterion between consecutive pairs of random numbers rather than the usually adopted Euclidian distance. We derive the theoretical distribution functions for the Manhattan distance for both overlapping (two dimensional) as well as non-overlapping cases. Extensive goodness-of-fit testing as well as empirical experimentation provides ample proof of the merits of the proposed criterion.
机译:本文通过为Lehmer随机数生成器提出新的随机性检验来考虑Marsaglia效应。我们的测试基于连续对随机数之间的曼哈顿距离标准,而不是通常采用的欧几里德距离。我们得出了重叠(二维)以及非重叠情况下曼哈顿距离的理论分布函数。广泛的拟合优度测试以及经验实验为提出的标准的优缺点提供了充分的证据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号