首页> 外文期刊>Journal of Parallel and Distributed Computing >GPU-based acceleration of the Linear Complexity Test for random number generator testing
【24h】

GPU-based acceleration of the Linear Complexity Test for random number generator testing

机译:基于GPU的随机数发生器测试的线性复杂性测试的加速度

获取原文
获取原文并翻译 | 示例

摘要

The Linear Complexity Test is a statistical test for verifying the randomness of a binary sequence produced by a random number generator (RNG). It is the most time-consuming test in the widely used randomness testing suite that was published by the National Institute of Standards and Technology (NIST). The slow performance of the original Linear Complexity Test implementation is one of the major hurdles in the RNG testing process. In this work, we present a parallelized implementation of the Linear Complexity Test for GPU computation. We incorporate two levels of parallelism and various design optimization approaches to accelerate the test execution on modern GPU architectures. To further enhance the performance, we also create a hybrid computation approach that uses both CPU and GPU simultaneously. We achieve a speedup of more than 4000 times over the original Linear Complexity Test implementation from NIST (27 times over the previous best implementation of the test). (C) 2019 Elsevier Inc. All rights reserved.
机译:线性复杂性测试是用于验证由随机数发生器(RNG)产生的二进制序列的随机性的统计测试。它是全国标准与技术研究所(NIST)发表的广泛使用的随机性测试套件中最耗时的测试。原始线性复杂性测试实现的缓慢性能是RNG测试过程中的主要障碍之一。在这项工作中,我们呈现了对GPU计算的线性复杂性测试的并行化实现。我们纳入了两个平行度和各种设计优化方法,以加速现代GPU架构上的测试执行。为了进一步提高性能,我们还创建了一种混合计算方法,它同时使用CPU和GPU。我们通过NIST的原始线性复杂性测试实现超过4000倍的加速度(在测试的最佳实施中的27次)。 (c)2019 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号