首页> 外文期刊>Communications in Statistics >Two Adjusted Empirical-Likelihood-Based Methods in Generalized Varying-Coefficient Partially Linear Model
【24h】

Two Adjusted Empirical-Likelihood-Based Methods in Generalized Varying-Coefficient Partially Linear Model

机译:广义变系数部分线性模型中的两种基于经验相似度的调整方法

获取原文
获取原文并翻译 | 示例

摘要

An empirical likelihood method was proposed by Owen and has been extended to many semiparametric and nonparametric models with a continuous response variable. However, there has been less attention focused on the generalized regression model. This article systematically studies two adjusted empirical-likelihood-based methods in the generalized varying-coefficient partially linear models. Based on the popular profile likelihood estimation procedure, the new adjusted empirical likelihood technology for the parameter is established and the resulting statistics are shown to be asymptotically standard chi-square distributed. Further, the adjusted empirical-likelihood-based confidence regions are established, and an efficient adjusted profile empirical-likelihood-based confidence intervals/regions for any components of the parameter, which are of primary interest, is also constructed. Their asymptotic properties are also derived. Some numerical studies are carried out to illustrate the performance of the proposed inference procedures.
机译:Owen提出了一种经验似然方法,并将其扩展到许多具有连续响应变量的半参数和非参数模型。但是,人们对通用回归模型的关注较少。本文系统地研究了广义变系数部分线性模型中的两种基于经验似然法的调整方法。基于流行的轮廓似然估计程序,建立了针对参数的新的调整后的经验似然技术,结果统计显示为渐近标准卡方分布。此外,建立了基于经验似然性的经调整的置信区域,并且还构建了对于参数的任何主要关注的有效调整轮廓基于经验似然性的置信区间/区域。还导出了它们的渐近性质。进行了一些数值研究来说明所提出的推理程序的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号