首页> 外文期刊>Communications in Statistics >Hierarchical Bayesian Approach to a Multi-Site Hidden Markov Model
【24h】

Hierarchical Bayesian Approach to a Multi-Site Hidden Markov Model

机译:多站点隐马尔可夫模型的多层贝叶斯方法

获取原文
获取原文并翻译 | 示例

摘要

Multivariate data with a sequential or temporal structure occur in various fields of study. The hidden Markov model (HMM) provides an attractive framework for modeling long-term persistence in areas of pattern recognition through the extension of independent and identically distributed mixture models. Unlike in typical mixture models, the heterogeneity of data is represented by hidden Markov states. This article extends the HMM to a multi-site or multivariate case by taking a hierarchical Bayesian approach. This extension has many advantages over a single-site HMM. For example, it can provide more information for identifying the structure of the HMM than a single-site analysis. We evaluate the proposed approach by exploiting a spatial correlation that depends on the distance between sites.
机译:具有顺序或时间结构的多元数据出现在各个研究领域。隐藏的马尔可夫模型(HMM)提供了一个有吸引力的框架,可通过扩展独立且分布均匀的混合模型来对模式识别区域中的持久性进行建模。与典型的混合模型不同,数据的异质性由隐马尔可夫状态表示。本文通过采用分层贝叶斯方法将HMM扩展到多站点或多变量案例。与单站点HMM相比,此扩展具有许多优势。例如,与单站点分析相比,它可以提供更多信息来标识HMM的结构。我们通过利用取决于站点之间距离的空间相关性来评估建议的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号