首页> 外文期刊>Communications in Statistics >A Simulation Study Comparing Multiple Imputation Methods for Incomplete Longitudinal Ordinal Data
【24h】

A Simulation Study Comparing Multiple Imputation Methods for Incomplete Longitudinal Ordinal Data

机译:不完整纵向序数数据的多种插补方法比较的仿真研究

获取原文
获取原文并翻译 | 示例

摘要

Multiple imputation (MI) is now a reference solution for handling missing data. The default method for MI is the Multivariate Normal Imputation (MNI) algorithm that is based on the multivariate normal distribution. In the presence of longitudinal ordinal missing data, where the Gaussian assumption is no longer valid, application of the MNI method is questionable. This simulation study compares the performance of the MNI and ordinal imputation regression model for incomplete longitudinal ordinal data for situations covering various numbers of categories of the ordinal outcome, time occasions, sample sizes, rates of missingness, well-balanced, and skewed data.
机译:多重插补(MI)现在是处理丢失数据的参考解决方案。 MI的默认方法是基于多元正态分布的多元正态插补(MNI)算法。在存在纵向序数缺失数据的情况下,其中高斯假设不再有效,因此使用MNI方法存在疑问。该模拟研究比较了MNI和序数归因回归模型针对不完整的纵向序数数据的性能,该情况涵盖了序数结果的各种类别,时间场合,样本量,缺失率,均衡的数据和偏斜的数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号